Inverse problem for quazilinear partial integro-differential equations of higher order
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 46-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method of studying an inverse problem for the some classes of quasilinear partial integro-differential equation of the higher order is proposed. A theorem on the existence and uniqueness of the solution of this problem is proved.
Keywords: inverse problem, quasilinear equation, superposition of differential operator, characteristics method, existence and uniqueness of the solution.
@article{VSGTU_2013_3_a3,
     author = {T. K. Yuldashev and A. I. Seredkina},
     title = {Inverse problem for quazilinear partial integro-differential equations of  higher order},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {46--55},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a3/}
}
TY  - JOUR
AU  - T. K. Yuldashev
AU  - A. I. Seredkina
TI  - Inverse problem for quazilinear partial integro-differential equations of  higher order
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 46
EP  - 55
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a3/
LA  - ru
ID  - VSGTU_2013_3_a3
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%A A. I. Seredkina
%T Inverse problem for quazilinear partial integro-differential equations of  higher order
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 46-55
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a3/
%G ru
%F VSGTU_2013_3_a3
T. K. Yuldashev; A. I. Seredkina. Inverse problem for quazilinear partial integro-differential equations of  higher order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 46-55. http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a3/

[1] A. M. Denisov, Introduction to the theory of inverse problem, Lomonosov Moscow State University, Moscow, 1994, 285 pp.

[2] V. G. Romanov, Inverse problem for mathematical physics, Nauka, Moscow, 1984, 264 pp. | MR

[3] M. M. Lavrent'ev, L. Ya. Savel'ev, Linear operators and ill-posed problems, Nauka, Moscow, 1999, 330 pp.

[4] T. K. Yuldashev, “On the inverse problem for the quasilinear partial differential equation of the first order”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 2, 56–62 | MR

[5] T. K. Yuldashev, “On the inverse problem for a system of quasi-linear partial differential equations of the first order”, Vestn. YuUrGU. Ser. Matematika. Mekhanika. Fizika, 6:11(270) (2012), 35–41 | Zbl

[6] T. K. Yuldashev, “Nonexplicit evolution Volterra integral equation of the first kind with nonlinear integral delay”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 2(19), 38–44 | DOI