Boundary value problem for mixed type equation of the third order with periodic conditions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 29-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem for the equation of the mixed elliptic-hyperbolic type with nonlocal boundary conditions is viewed. This problem is reduced to the inverse problem for elliptic-hyperbolic equation with unknown right-hand parts. The criterion of the uniqueness is established. The explicit solution is constructed as the sum of orthogonal trigonometric series of the one-dimensional spectral problem eigenfunctions. The argumentation of the series convergence under some restrictions is given. The stability of the solution by the boundary functions is proved.
Keywords: equations of the mixed type of third order, direct and inverse problems, spectral method, uniqueness, stability.
Mots-clés : existense
@article{VSGTU_2013_3_a2,
     author = {K. B. Sabitov and G. Yu. Udalova},
     title = {Boundary value problem for mixed type equation of the third order with periodic conditions},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {29--45},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a2/}
}
TY  - JOUR
AU  - K. B. Sabitov
AU  - G. Yu. Udalova
TI  - Boundary value problem for mixed type equation of the third order with periodic conditions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 29
EP  - 45
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a2/
LA  - ru
ID  - VSGTU_2013_3_a2
ER  - 
%0 Journal Article
%A K. B. Sabitov
%A G. Yu. Udalova
%T Boundary value problem for mixed type equation of the third order with periodic conditions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 29-45
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a2/
%G ru
%F VSGTU_2013_3_a2
K. B. Sabitov; G. Yu. Udalova. Boundary value problem for mixed type equation of the third order with periodic conditions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 29-45. http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a2/

[1] A. V. Bitsadze, M. S. Salakhitdinov, “On the theory of equations of mixed-composite type”, Sibirsk. Mat. Zh., 2:1 (1961), 7–19 | Zbl

[2] T. D. Dzhuraev, Boundary value problems for equations of mixed and mixed-composite types, Fan, Tashkent, 1979, 239 pp. | MR | Zbl

[3] A. I. Kozhanov, Boundary Value Problems for Odd-Order Equations of Mathematical Physics, Novosibirsk. Univ., Novosibirsk, 1990, 150 pp.

[4] K. B. Sabitov, “A boundary value problem for a third-order equation of mixed type”, Dokl. Math., 80:1 (2009), 565–568 | DOI | MR | Zbl

[5] K. B. Sabitov, “The Dirichlet problem for a third-order equation of mixed type in a rectangular domain”, Differ. Equ., 47:5 (2011), 706–714 | DOI | MR | Zbl

[6] A. N. Tikhonov, “On the stability of inverse problems”, C. R. (Doklady) Acad. Sci. URSS (N.S.), 39:5 (1943), 176–179 | MR | Zbl

[7] M. M. Lavrent'ev, “On an inverse problem for the wave equation”, Soviet Math. Dokl., 5:3 (1964), 970–972 | MR | Zbl

[8] M. M. Lavrent'ev, K. G. Reznitskaya, V. G. Yakhno, One-dimensional inverse problems of mathematical physics, Nauka, Sibirsk. Otdel., Novosibirsk, 1982, 88 pp. | MR

[9] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Theory of linear ill-posed problems and its applications, Nauka, Moscow, 1978, 206 pp. | MR

[10] A. I. Prilepko, D. S. Tkachenko, “Properties of solutions of a parabolic equation and the uniqueness of the solution of the inverse source problem with integral overdetermination”, Comput. Math. Math. Phys., 43:4 (2003), 537–546 | MR | Zbl

[11] A. V. Baev, “Uniqueness of a solution of an inverse problem for an equation in acoustics, and an inverse spectral problem”, Mat. Zametki, 47:2 (1990), 149–151 | MR | Zbl

[12] A. M. Denisov, Introduction to the theory of inverse problems, Moscow State Univ., Moscow, 1994, 285 pp.

[13] A. I. Kozhanov, “Nonlinear loaded equations and inverse problems”, Comput. Math. Math. Phys., 44:4 (2004), 657–675 | MR | Zbl

[14] K. B. Sabitov, É. M. Safin, “The inverse problem for an equation of mixed parabolic-hyperbolic type”, Math. Notes, 87:6 (2010), 880–889 | DOI | DOI | MR | Zbl

[15] K. B. Sabitov, N. V. Martem'yanova, “A nonlocal inverse problem for a mixed-type equation”, Russian Math. (Iz. VUZ), 55:2 (2011), 61–74 | DOI | MR | Zbl

[16] K. B. Sabitov, N. V. Martem'yanova, “An inverse problem for an equation of elliptic-hyperbolic type with a nonlocal boundary condition”, Siberian Math. J., 53:3 (2012), 507–519 | DOI | MR | Zbl

[17] K. B. Sabitov, I. A. Khadzhi, “The boundary-value problem for the Lavrent'ev–Bitsadze equation with unknown right-hand side”, Russian Math. (Iz. VUZ), 55:5 (2011), 35–42 | DOI | MR | Zbl

[18] G. Yu. Udalova, “Inverse problem for equation of mixed elliptic-hyperbolic type”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2010, no. 4(78), 89–97

[19] G. Yu. Udalova, “Inverse problem for equation with Lavrentev–Bitsadze operator”, Doklady Adygskoy (Cherkesskoy) Mezhdunarodnoy Akademii Nauk, 14:1 (2012), 98–111

[20] G. Yu. Udalova, “The boundary-value problem for the Lavrent'ev–Bitsadze equation with unknown right-hand side”, Nauchnyye Vedomosti Belgorodskogo Gos. Un-ta. Ser. Matematika. Fizika, 26:5 (2012), 209–225

[21] A. Ja. Hinchin, Continued fractions, Nauka, Moscow, 1978, 112 pp. | MR

[22] V. I. Arnol'd, “Small denominators and problems of stability of motion in classical and celestial mechanics”, Russian Math. Surveys, 18:6 (1963), 85–191 | DOI | MR | Zbl

[23] A. Zigmund, Trigonometric series, v. 1, Mir, Moscow, 1965, 616 pp. | MR