Mathematical modeling of the conservation of populations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 190-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

The system of difference equations describing the process of industrial fish catching while their abundance is maintained is proposed. Population size changing and, consequently, the volume of catch are predicted on the basis of this model study. The impact on the model of the parameters responsible for catch rate and factors that characterize the population growth rate is analyzed taking into account the terms of the equation describing the increase in the population size at the expense of fish farms. The proposed model and the results, in particular, can be used to solve problems of the size reducing of population of the rare breed fish and disappearance of valuable species of fish such as sturgeon.
Keywords: system of difference equations, parameters, growth rate
Mots-clés : population.
@article{VSGTU_2013_3_a15,
     author = {O. S. Afanas'eva and G. F. Egorova and L. V. Kaidalova},
     title = {Mathematical modeling of the conservation of populations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {190--194},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a15/}
}
TY  - JOUR
AU  - O. S. Afanas'eva
AU  - G. F. Egorova
AU  - L. V. Kaidalova
TI  - Mathematical modeling of the conservation of populations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 190
EP  - 194
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a15/
LA  - ru
ID  - VSGTU_2013_3_a15
ER  - 
%0 Journal Article
%A O. S. Afanas'eva
%A G. F. Egorova
%A L. V. Kaidalova
%T Mathematical modeling of the conservation of populations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 190-194
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a15/
%G ru
%F VSGTU_2013_3_a15
O. S. Afanas'eva; G. F. Egorova; L. V. Kaidalova. Mathematical modeling of the conservation of populations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 190-194. http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a15/

[1] G. Yu. Riznichenko, Mathematical models in biophysics and ecology, Institut Komp'yuternykh Issledovaniy, Moscow, Izhevsk, 2003, 184 pp.

[2] A. M. Nakhushev, Equations of Mathematical Biology, Vyssh. Shk., Moscow, 1995, 301 pp. | Zbl

[3] E. G. Pugacheva, K. N. Solovienko, Self-Organization of Socio-Economic Systems, BGUEP, Irkutsk, 2003, 172 pp.

[4] Caspian Sea – State of Environment 2011, Report by the interim Secretariat of the Framework Convention for the Protection of the Marine Environment of the Caspian Sea and the Project Coordination Management Unit of the “CaspEco” project; , 2010, 102 pp. http://www.caspianenvironment.org/newsite/DocCenter/2011/Caspian SoE English_05-08-11.pdf