On a boundary value problem for mixed type equation with nonlocal initial conditions in the rectangle
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 185-189.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary value problem for mixed type equation with nonlocal initial conditions in integral form is considered. The main result states that the nonlocal problem is equivalent to the classical boundary value problem for a loaded equation. This fact helps to prove the uniqueness and, under extra restrictions, the existence of a generalized solution of the problem.
Keywords: mixed type equation, generalized solution.
Mots-clés : nonlocal conditions
@article{VSGTU_2013_3_a14,
     author = {S. V. Kirichenko},
     title = {On a boundary value problem for mixed type equation with nonlocal initial conditions in the rectangle},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {185--189},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a14/}
}
TY  - JOUR
AU  - S. V. Kirichenko
TI  - On a boundary value problem for mixed type equation with nonlocal initial conditions in the rectangle
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 185
EP  - 189
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a14/
LA  - ru
ID  - VSGTU_2013_3_a14
ER  - 
%0 Journal Article
%A S. V. Kirichenko
%T On a boundary value problem for mixed type equation with nonlocal initial conditions in the rectangle
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 185-189
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a14/
%G ru
%F VSGTU_2013_3_a14
S. V. Kirichenko. On a boundary value problem for mixed type equation with nonlocal initial conditions in the rectangle. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 185-189. http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a14/

[1] A. A. Samarskiy, “Some problems of the theory of differential equations”, Differ. Uravn., 16:11 (1980), 1925–1935 | MR

[2] J. R. Cannon, “The solution of the heat equation subject to the specification of energy”, Quart. Appl. Math., 21 (1963), 155–160 | MR

[3] “On solvability of nonlocal problems for a second-order elliptic equation”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 101–136 | DOI | MR | Zbl

[4] A. L. Skubachevskiy, “Nonclassical boundary value problems. I.”, Journal of Mathematical Sciences, 155:2 (2008), 199–334 | DOI | MR | Zbl

[5] D. G. Gordeziani, G. A. Avalishvili, “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matem. Mod., 12:1 (2000), 94–103 | MR | Zbl

[6] A. I. Kozhanov, L. S. Pul'kina, “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI | MR | Zbl

[7] L. S. Pul'kina, “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Math. (Iz. VUZ), 56:4 (2012), 62–69 | DOI | MR | Zbl

[8] K. B. Sabitov, “Boundary value problem for a parabolic-hyperbolic equation with a nonlocal integral condition”, Differ. Equ., 46:10 (2010), 1468–1478 | DOI | MR | Zbl