On a problem with a displacement for a partial differential equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 21-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unique solvability of the problem with the generalized operators of fractional integro-differentiation in the boundary condition is investigated for the mixed type equation. The uniqueness theorem for the nonlocal problem is proved. The proof of existence of the problem solution is reduced to the demonstration of solvability of Fredholm integral equation of the second kind.
Keywords: boundary value problem, generalized operator of fractional integro-differentiation, Gauss hypergeometric function, Fredholm equation of the second kind.
@article{VSGTU_2013_3_a1,
     author = {A. V. Tarasenko},
     title = {On a problem with a displacement for  a partial differential equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {21--28},
     publisher = {mathdoc},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a1/}
}
TY  - JOUR
AU  - A. V. Tarasenko
TI  - On a problem with a displacement for  a partial differential equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 21
EP  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a1/
LA  - ru
ID  - VSGTU_2013_3_a1
ER  - 
%0 Journal Article
%A A. V. Tarasenko
%T On a problem with a displacement for  a partial differential equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 21-28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a1/
%G ru
%F VSGTU_2013_3_a1
A. V. Tarasenko. On a problem with a displacement for  a partial differential equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 3 (2013), pp. 21-28. http://geodesic.mathdoc.fr/item/VSGTU_2013_3_a1/

[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. | MR | Zbl

[2] A. N. Kochubei, “Fractional-order diffusion”, Differ. Equ., 26:4 (1990), 485–492 | MR | Zbl

[3] A. A. Kilbas, O. A. Repin, “An analog of the Bitsadze-Samarskiǐ problem for a mixed type equation with a fractional derivative”, Differ. Equ., 39:5 (2003), 674–680 | DOI | MR | Zbl

[4] A. V. Pskhu, Partial differential equations of fractional order, Nauka, Moscow, 2005, 199 pp. | MR | Zbl

[5] Z. A. Nakhusheva, Non-local boundary value problems for the main and mixed types of differential equations, KBNTs RAN, Nalchik, 2011, 196 pp.

[6] V. A. Nakhusheva, Differential equations of mathematical models of nonlocal processes, Nauka, Moscow, 2006, 173 pp. | MR | Zbl

[7] M. Saigo, “A remark on integral operators involving the Gauss hypergeometric functions”, Math. Rep. College General Educ., Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl

[8] A. Erdélyi, W. Magnus F. Oberhettinger, F. G. Tricomi, Higher transcendental functions, v. 3, McGraw-Hill, New York, 1955, xii+292 pp. | MR | MR | Zbl

[9] M. M. Smirnov, Equations of mixed type, Nauka, Moscow, 1970, 295 pp. | MR

[10] F. G. Tricomi, Equazioni a derivate parziali, Edizioni Cremonese, Rome, 1957, xii+392 pp. | MR | Zbl

[11] O. A. Repin, S. K. Kumykova, “On a boundary value problem with shift for an equation of mixed type in an unbounded domain”, Differ. Equ., 48:8 (2012), 1127–1136 | DOI | MR | Zbl

[12] A. A. Kilbas, O. A. Repin, “A non-local problem for the equation of mixed type with the partial Riemann–Liouvile fractional derivative and generalized integro-differentiation operators in boundary condition”, Tr. Inst. Mat., Minsk, 12:2 (2004), 75–81