Artificial neural network with modulation of~synaptic coefficients
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 58-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model of neural network based on artificial neuron with dynamic synaptic weights was constructed. As main model processes for changing the synaptic weights were chosen: weakening of a synaptic weight in the absence of synapse stimulation, and modulation of a weight with synchronous irritation of some other synaptic junction.
Keywords: artificial neuron with synaptic plasticity.
@article{VSGTU_2013_2_a6,
     author = {M. N. Nazarov},
     title = {Artificial neural network with modulation of~synaptic coefficients},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {58--71},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a6/}
}
TY  - JOUR
AU  - M. N. Nazarov
TI  - Artificial neural network with modulation of~synaptic coefficients
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 58
EP  - 71
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a6/
LA  - ru
ID  - VSGTU_2013_2_a6
ER  - 
%0 Journal Article
%A M. N. Nazarov
%T Artificial neural network with modulation of~synaptic coefficients
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 58-71
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a6/
%G ru
%F VSGTU_2013_2_a6
M. N. Nazarov. Artificial neural network with modulation of~synaptic coefficients. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 58-71. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a6/

[1] Yu. F. Golubev, “Neural networks in mechatronics”, J. Math. Sci., 147:2 (2007), 6607–6622 | DOI | MR | Zbl

[2] P. D. Wasserman, Neural Computing, theory and practice, Van Nostrand Reinhold, New York, 1989; F. Uossermen, Neirokompyuternaya tekhnika: Teoriya i praktika, Mir, M., 1992, 240 pp.

[3] T. Kohonen, Self-Organizing Maps. Third extended edition, Springer Series in Information Sciences, 30, Springer-Verlag, Berlin, 2001, xx+501 pp. | DOI | Zbl

[4] A. L. Hodgkin, A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve”, J. Physiol., 1952, no. 117, 500–544

[5] V. V. Maiorov, I. Yu. Myshkin, “Mathematical modeling of a neuron net on the basis of the equation with delays”, Matem. Mod., 2:11 (1990), 64–76 | MR | Zbl

[6] O. A. Dunaeva, “Principles of constructing layered neural networks based on pulse neurons”, Model. Anal. Inform. Sist., 18:2 (2011), 65–76

[7] E. V. Konovalov, “The problem of adaptation of the generalized neural element”, Model. Anal. Inform. Sist., 19:1 (2012), 69–83

[8] J.-H. Han, S. A. Kushner, A. P. Yiu, C. J. Cole, A. Matynia, R. A. Brown, R. L. Neve, J. F. Guzowski, A. J. Silva, S. A. Josselyn, “Neuronal Competition and Selection During Memory Formation”, Science, 316:5823 (2007), 457–460 | DOI

[9] I. Antonov, I. Antonova, E. R. Kandel, R. D. Hawkinssend, “Activity-Dependent Presynaptic Facilitation and Hebbian LTP Are Both Required and Interact during Classical Conditioning in Aplysia”, Neuron, 37:1 (2003), 135–147 | DOI