Piezomechanical properties of magneto electric composites with Maksvell--Wagner relaxation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 42-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical calculation and the analysis of influence on the real and imaginary parts of effective piezoelectric and piezomagnetic factors of magnetoelectric piezocomposite (is PVF with unidirectional ferrite fibers) of size of filling by fibers and of frequency of the enclosed electric field taking into account Maxwell–Wagner relaxation are carried out.
Keywords: piezocomposite, electro-magnetic elasticity, effective properties, Maxwell–Wagner relaxation.
@article{VSGTU_2013_2_a4,
     author = {A. A. Pan'kov},
     title = {Piezomechanical properties of magneto electric composites with {Maksvell--Wagner} relaxation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {42--49},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a4/}
}
TY  - JOUR
AU  - A. A. Pan'kov
TI  - Piezomechanical properties of magneto electric composites with Maksvell--Wagner relaxation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 42
EP  - 49
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a4/
LA  - ru
ID  - VSGTU_2013_2_a4
ER  - 
%0 Journal Article
%A A. A. Pan'kov
%T Piezomechanical properties of magneto electric composites with Maksvell--Wagner relaxation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 42-49
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a4/
%G ru
%F VSGTU_2013_2_a4
A. A. Pan'kov. Piezomechanical properties of magneto electric composites with Maksvell--Wagner relaxation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 42-49. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a4/

[1] V. Z. Parton, B. A. Kudryavtsev, Electromagnetoelasticity, Piezoelectrics and Electrically Conductive Solids, Gordon and Breach, New York, 1988, 503 pp.

[2] I. P. Getman, “Magnetoelectric effect in piezoelectric composites”, Soviet Physics Doklady, 36 (1991), 233

[3] A. A. Pan'kov, “Coefficients of electromagnetic coupling of composite with piezoactive phases”, Fiz. mezomekh., 14:2 (2011), 93–99

[4] A. V. Turik, A. I. Chernobabov, M. Yu. Rodinin, E. A. Tolokol'nikov, “Magnetoelectricity in two-dimensional statistical mixtures”, Phys. Sol. State, 51:7 (2009), 1478–1481 | DOI

[5] A. V. Turik, A. I. Chernobabov, M. Yu. Rodinin, “Heterogeneous multiferroics: Magnetoelectricity and piezoelectric effect”, Phys. Sol. State, 51:8 (2009), 1675–1678 | DOI

[6] V. M. Petrov, M. I. Bichurin, G. Srinivasan, “Maxwell–Wagner relaxation in magnetoelectric composites”, Tech. Phys. Lett., 30:4 (2004), 341–344 | DOI

[7] G. S. Radchenko, A. V. Turik, “Giant piezoelectric effect in layered ferroelectric-polymer composites”, Phys. Sol. State, 45:9 (2003), 1759–1762 | DOI

[8] A. I. Chernobabov, A. V. Turik, E. A. Tolokol'nikov, M. Yu. Rodinin, G. I. Temirchev, “Chaotic dynamics in piezoelectrically active statistical mixtures”, Phys. Sol. State, 51:7 (2009), 1507–1509 | DOI

[9] V. A. Sotskov, “Experimental study of the concentration dependence of the real part of permittivity in a paraffin-graphite disordered macrosystem”, Tech. Phys. Lett., 30:6 (2004), 487–488 | DOI

[10] A. N. Ul'zutuev, N. M. Ushakov, “Temperature dependence of the dielectric permittivity of poly(methyl methacrylate) filled with metal nanoparticles”, Tech. Phys. Lett., 38:3 (2012), 245–247 | DOI

[11] A. A. Pan'kov, Statistical Mechanics of Piezocomposites, Perm. Gosud. Universitet, Perm, 2009, 480 pp.

[12] T. D. Shermergor, Theory of Elasticity of Microinhomogeneous Media, Nauka, Moscow, 1976, 399 pp.

[13] L. P. Khoroshun, B. P. Maslov, P. V. Leshchenko, Prediction of the Effective Properties of Piezoactive Composite Materials, Naukova Dumka, Kiev, 1989, 208 pp.

[14] R. M. Christensen, Mechanics of composite materials, Wiley-Interscience, New York, 1979, 348 pp.; R. Kristensen, Vvedenie v mekhaniku kompozitov, Mir, M., 1982, 334 pp.

[15] G. M. Sessler, “Piezoelectricity in polyvinylidenefluoride”, J. Acoust. Soc. Amer., 70:6 (1981), 1596–1608 | DOI