On the Hartman effect and velocity of propagating the electromagnetic wave in the tunneling process
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 215-222.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new approach to the problem of scattering the plane electromagnetic TE wave on a homogeneous dielectric layer is presented, which does not predict, unlike the standard model, the Hartman effect for the tunneling time in the case of scattering the TE wave in the regime of a frustrated total internal refection (FTIR). The basic idea of this approach is that a correct definition of the tunneling velocity and time is possible if only the dynamics of both its subprocesses — transmission and reflection — is known at all stages of the scattering process investigated. It is shown that the Wigner (group) tunneling time was introduced without taking into account of this requirement, and, as a consequence, both this characteristic itself and the associated with it Hartman effect have no relation to transferring the light energy through the layer. The dwell transmission time, which is directly related to it, does not lead to the Hartman effect.
Keywords: group velocity, energy velocity, tunneling time, reflection.
Mots-clés : transmission
@article{VSGTU_2013_2_a24,
     author = {N. L. Chuprikov},
     title = {On the {Hartman} effect and velocity of propagating the electromagnetic wave in the tunneling process},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {215--222},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a24/}
}
TY  - JOUR
AU  - N. L. Chuprikov
TI  - On the Hartman effect and velocity of propagating the electromagnetic wave in the tunneling process
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 215
EP  - 222
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a24/
LA  - ru
ID  - VSGTU_2013_2_a24
ER  - 
%0 Journal Article
%A N. L. Chuprikov
%T On the Hartman effect and velocity of propagating the electromagnetic wave in the tunneling process
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 215-222
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a24/
%G ru
%F VSGTU_2013_2_a24
N. L. Chuprikov. On the Hartman effect and velocity of propagating the electromagnetic wave in the tunneling process. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 215-222. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a24/

[1] T. E. Hartman, “Tunneling of a Wave Packet”, J. Appl. Phys., 33:12 (1962), 3427–3433 | DOI

[2] J. Jakiel, V. S. Olkhovsky, E. Recami, “On superluminal motions in photon and particle tunnellings”, Phys. Lett. A, 248:2–4 (1998), 156–160 | DOI

[3] G. Nimtz, “Tunneling Confronts Special Relativity”, Found. Phys., 41:7 (2011), 1193–1199, arXiv: [quant-ph] 003.3944 | DOI | MR | Zbl

[4] D. J. Papoular, P. Clade, S. V. Polyakov, C. F. McCormick, A. L. Migdall, P. D. Lett, “Measuring optical tunneling times using a Hong–Ou–Mandel interferometer”, Optics Express, 16:20 (2008), 16005–16012 | DOI

[5] N. Borjemscaia, S. V. Polyakov, P. D. Lett, A. Migdall, “Single-photon propagation through dielectric bandgaps”, Optics Express, 18:3 (2009), 2279–2286 | DOI

[6] N. Brunner, V. Scarani, M. Wegmuller, M. Legrre, N. Gisin, “Direct measurement of superluminal group velocity and signal velocity in an optical fiber”, Phys. Rev. Lett., 93:20 (2004), 203902, 4 pp., arXiv: quant-ph/0407155 | DOI

[7] R. Y. Chiao, J. Boyce, M. W. Mitchell, “Superluminality and parelectricity: The ammonia maser revisited”, Appl. Phys. B, 60:2–3 (1995), 259–265 | DOI

[8] M. Büttiker, R. Landauer, “Traversal time for tunneling”, Phys. Rev. Lett., 49:23 (1982), 1739–1742 | DOI

[9] N. L. Chuprikov, “New approach to the quantum tunnelling process: wave functions for transmission and reflection”, Russ. Phys. J., 49:2 (2006), 119–126 | DOI | MR | Zbl

[10] N. L. Chuprikov, “On a new mathematical model of tunnelling”, Vestn. Samar. Gos. Univ. Estestvennonauchn. Ser., 2008, no. 8/1(67), 625–633

[11] N. L. Chuprikov, “From a 1D Completed Scattering and Double Slit Diffraction to the Quantum-Classical Problem for Isolated Systems”, Found. Phys., 41:9 (2011), 1502–1520 | DOI | MR | Zbl

[12] M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge U. P., New York, 1999 [1959], 952 pp. ; M. Born, E. Volf, Osnovy optiki, Nauka, M., 1970, 856 pp. | MR | Zbl

[13] A. B. Shvartsburg, “Tunneling of electromagnetic waves: paradoxes and prospects”, Phys. Usp., 50:1 (2007), 37–51 | DOI | DOI