Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_2_a21, author = {A. N. Byzykchi and V. M. Zhuravlev}, title = {Solitons and the generalized {Cole-Hopf} substitutions}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {193--199}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a21/} }
TY - JOUR AU - A. N. Byzykchi AU - V. M. Zhuravlev TI - Solitons and the generalized Cole-Hopf substitutions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 193 EP - 199 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a21/ LA - ru ID - VSGTU_2013_2_a21 ER -
%0 Journal Article %A A. N. Byzykchi %A V. M. Zhuravlev %T Solitons and the generalized Cole-Hopf substitutions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 193-199 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a21/ %G ru %F VSGTU_2013_2_a21
A. N. Byzykchi; V. M. Zhuravlev. Solitons and the generalized Cole-Hopf substitutions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 193-199. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a21/
[1] V. E. Zaharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskiy, Theory of solitons. The method of the inverse problem, Nauka, Moscow, 1980, 320 pp. | MR
[2] V. M. Zhuravlev, A. V. Nikitin, “On a nonlinear equations associated with heat conduction equation and d'Alembert equation with using Coul–Hopf substitutions”, Nelineyniy mir, 5:9 (2007), 603–611
[3] V. M. Zhuravlev, D. A. Zinov'ev, “Nonlinear equations linearized using the generalized Cole–Hopf substitutions and the exactly integrable models of the one-dimensional compressible fluid flows”, JETP Letters, 87:5 (2008), 266–270 | DOI | MR
[4] V. M. Zhuravlev, D. A. Zinov'ev, “Method of generalized Cole–Hopf substitutions for dimension 1+2 and integrable models for two-dimensional compressible flows”, JETP Letters, 88:3 (2008), 164–166 | DOI
[5] V. M. Zhuravlev, “The method of generalized Cole–Hopf substitutions and new examples of linearizable nonlinear evolution equations”, Theoret. and Math. Phys., 158:1 (2009), 48–60 | DOI | DOI | MR | Zbl
[6] V. M. Zhuravlev, C. S. Obrubov, “Method of general Coule–Hopf substitutions in theory of finite-dimensional dynamical systems”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 1(22), 83–89 | DOI
[7] V. B. Matveev, “Darboux transformation and explicit solutions of the Kadomtcev–Petviaschvily equation, depending on functional parameters”, Lett. Math. Phys., 3:3 (1979), 213–216 | DOI | MR | Zbl
[8] G. B. Whitham, Linear and Nonlinear Waves, Pure and Applied Mathematics, John Wiley Sons, New York, 1974, xvi+636 pp. ; Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1978, 624 pp. | MR | Zbl
[9] S. I. Svinolupov, “Analogs of the Burgers equation of arbitrary order”, Theoret. and Math. Phys., 65:2 (1985), 1177–1180 | DOI | MR | Zbl