Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_2_a2, author = {A. P. Yankovskii}, title = {Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {17--35}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a2/} }
TY - JOUR AU - A. P. Yankovskii TI - Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 17 EP - 35 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a2/ LA - ru ID - VSGTU_2013_2_a2 ER -
%0 Journal Article %A A. P. Yankovskii %T Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 17-35 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a2/ %G ru %F VSGTU_2013_2_a2
A. P. Yankovskii. Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 17-35. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a2/
[1] A. P. Yankovskii, “On some properties of equal-stress problem solution reinforcement bending the metal-composite plates working in steady creep conditions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 2(23), 62–73 | DOI
[2] A. P. Yankovskii, “Equal-Stress Reinforcement the Ring Bending Metal-Composites Plates Working in Conditions of Steady Creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 42–54 | DOI
[3] T. D. Dzhuraev, Boundary value problems for equations of mixed and mixed-composite types, Fan, Tashkent, 1979, 239 pp. | MR | Zbl
[4] A. A. Samarskii, Theory of Difference Schemes, Nauka, Moscow, 1989, 616 pp. | MR
[5] O. C. Zeinkiewicz, R. L. Taylor, The finite element method, v. 1, The Basis, Butterworth-Heinemann, Oxford, 2000, xviii+689 pp. | MR
[6] A. Nayfeh, Introduction to Perturbation Techniques, Wiley-Interscience, New York, 1981, xiv+519 pp. ; A. Naife, Vvedenie v metody vozmuschenii, Mir, M., 1984, 536 pp. | MR | Zbl | MR
[7] G. S. Pisarenko, N. S. Mozharovskii, Equations and Boundary-Value Problems of the Theory of Plasticity and Creep, Handbook, Naukova Dumka, Kiev, 1981, 496 pp. | MR | Zbl
[8] A. F. Nikitenko, Creep and Long-Term Strength of Metal Materials, Novosib. Gosud. Arhkit. Stroit. Univ., Novosibirsk, 1997, 278 pp.
[9] Composite Materials, Handbook, ed. D. M. Karpinos, Naukova Dumka, Kiev, 1985, 592 pp.
[10] D. M. Karpinos, V. A. Nevgod, L. I. Tuchinskii, L. N. Klimenko, L. R. Vishnyakov, V. A. Bespyatyi, V. Kh. Kadyrov, “Creep and durability of tungsten wire”, Strength of Materials, 4:1 (1972), 72–75 | DOI
[11] V. V. Novozhilov, K. F. Chernykh, E. I. Mikhaylovskiy, Linear Theory of Thin Shells, Politekhnika, Leningrad, 1991, 656 pp. | MR
[12] E. Kamke, Differentialgleichungen. Losungsmethoden und Losungen, v. II, Partielle Differentialgleichungen erster Ordnung für eine gesuchte Funktion, Leipzig, 1959; E. Kamke, Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966, 260 pp. | Zbl
[13] A. Dzhuraev, Systems of Equations of Composite Type, Nauka, Moscow, 1972, 228 pp. | MR | Zbl
[14] G. M. Fikhtengol'ts, A Course of Differential and Integral Calculus, v. 1, Nauka, Moscow, 1970, 607 pp.
[15] B. L. Rozhdestvenskii, N. N. Yanenko, Systems of Quasi-Linear Equations, Nauka, Moscow, 1969, 592 pp.
[16] O. A. Ladyzhenskaya, Linear and Quasi-Linear Equations of Parabolic Type, Nauka, Moscow, 1967, 736 pp. | MR
[17] L. M. Kachanov, Fundamentals of the Theory of Plasticity, Nauka, Moscow, 1969, 420 pp.
[18] I. G. Petrovskii, Lectures on Partial Differential Equations, Fizmatgiz, Moscow, 1961, 400 pp. | MR
[19] A. P. Yankovskii, “Application of methods of the theory of perturbations in flat problem of equally-stressed reinforcing of metal-composite plates at steady creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 2(19), 53–71 | DOI | MR
[20] Yu. V. Nemirovskii, A. P. Yankovskii, “Equal-stressed reinforcement of metal-composite plates with fibers of constant cross section in steady-state creep”, Mech. Compos. Mater., 44:1 (2008), 9–24 | DOI | MR
[21] Yu. V. Nemirovskii, A. P. Yankovskii, “The steady creep layer-fibrous bendings metal-composites plates”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 2(17), 66–76 | DOI
[22] Yu. V. Nemirovskii, B. S. Reznikov, Strength of Structural Elements Made of Composite Materials, Nauka, Novosibirsk, 1986, 168 pp.
[23] Yu. V. Nemirovskii, A. P. Yankovskii, “Thermoelastoplastic Bending of Complexly Reinforced Plates”, Mech. Compos. Mater., 41:6 (2005), 477–496 | DOI
[24] Yu. V. Nemirovskii, A. P. Yankovskii, “Generalization of the Runge–Kutta methods and their application tointegration of initial-boundary value problems of mathematical physics”, Sib. Zh. Vychisl. Mat., 8:1 (2005), 57–76 | Zbl
[25] Yu. V. Nemirovskii, A. P. Yankovskii, “On some features of the equations of shells reinforced with fibres of constant crosssection”, Mekhanika Kompozitsionnykh Materialov i Konstrukciy, 3:2 (1997), 15–39