Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 17-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of equally-stressed reinforcing of bending metal-composite plates in conditions of steady-state creep, is solved by the help of methods of the perturbation theory. The opportunity of existence of several alternative solutions of a considered problem which can be reliably determined using the developed algorithm is shown. Concrete projects are constructed for equally-stressed reinforcing doubly connected plates with different density of reinforcing on an internal contour.
Keywords: bending plates, steady-state creep, rational designing, equally-stressed reinforcing, small parameter, perturbation theory.
@article{VSGTU_2013_2_a2,
     author = {A. P. Yankovskii},
     title = {Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {17--35},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a2/}
}
TY  - JOUR
AU  - A. P. Yankovskii
TI  - Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 17
EP  - 35
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a2/
LA  - ru
ID  - VSGTU_2013_2_a2
ER  - 
%0 Journal Article
%A A. P. Yankovskii
%T Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 17-35
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a2/
%G ru
%F VSGTU_2013_2_a2
A. P. Yankovskii. Application of methods of the perturbation theory to problem of equally-stressed reinfocing of bending metal-composite plates in conditions of steady-state creep. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 17-35. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a2/

[1] A. P. Yankovskii, “On some properties of equal-stress problem solution reinforcement bending the metal-composite plates working in steady creep conditions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 2(23), 62–73 | DOI

[2] A. P. Yankovskii, “Equal-Stress Reinforcement the Ring Bending Metal-Composites Plates Working in Conditions of Steady Creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 42–54 | DOI

[3] T. D. Dzhuraev, Boundary value problems for equations of mixed and mixed-composite types, Fan, Tashkent, 1979, 239 pp. | MR | Zbl

[4] A. A. Samarskii, Theory of Difference Schemes, Nauka, Moscow, 1989, 616 pp. | MR

[5] O. C. Zeinkiewicz, R. L. Taylor, The finite element method, v. 1, The Basis, Butterworth-Heinemann, Oxford, 2000, xviii+689 pp. | MR

[6] A. Nayfeh, Introduction to Perturbation Techniques, Wiley-Interscience, New York, 1981, xiv+519 pp. ; A. Naife, Vvedenie v metody vozmuschenii, Mir, M., 1984, 536 pp. | MR | Zbl | MR

[7] G. S. Pisarenko, N. S. Mozharovskii, Equations and Boundary-Value Problems of the Theory of Plasticity and Creep, Handbook, Naukova Dumka, Kiev, 1981, 496 pp. | MR | Zbl

[8] A. F. Nikitenko, Creep and Long-Term Strength of Metal Materials, Novosib. Gosud. Arhkit. Stroit. Univ., Novosibirsk, 1997, 278 pp.

[9] Composite Materials, Handbook, ed. D. M. Karpinos, Naukova Dumka, Kiev, 1985, 592 pp.

[10] D. M. Karpinos, V. A. Nevgod, L. I. Tuchinskii, L. N. Klimenko, L. R. Vishnyakov, V. A. Bespyatyi, V. Kh. Kadyrov, “Creep and durability of tungsten wire”, Strength of Materials, 4:1 (1972), 72–75 | DOI

[11] V. V. Novozhilov, K. F. Chernykh, E. I. Mikhaylovskiy, Linear Theory of Thin Shells, Politekhnika, Leningrad, 1991, 656 pp. | MR

[12] E. Kamke, Differentialgleichungen. Losungsmethoden und Losungen, v. II, Partielle Differentialgleichungen erster Ordnung für eine gesuchte Funktion, Leipzig, 1959; E. Kamke, Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966, 260 pp. | Zbl

[13] A. Dzhuraev, Systems of Equations of Composite Type, Nauka, Moscow, 1972, 228 pp. | MR | Zbl

[14] G. M. Fikhtengol'ts, A Course of Differential and Integral Calculus, v. 1, Nauka, Moscow, 1970, 607 pp.

[15] B. L. Rozhdestvenskii, N. N. Yanenko, Systems of Quasi-Linear Equations, Nauka, Moscow, 1969, 592 pp.

[16] O. A. Ladyzhenskaya, Linear and Quasi-Linear Equations of Parabolic Type, Nauka, Moscow, 1967, 736 pp. | MR

[17] L. M. Kachanov, Fundamentals of the Theory of Plasticity, Nauka, Moscow, 1969, 420 pp.

[18] I. G. Petrovskii, Lectures on Partial Differential Equations, Fizmatgiz, Moscow, 1961, 400 pp. | MR

[19] A. P. Yankovskii, “Application of methods of the theory of perturbations in flat problem of equally-stressed reinforcing of metal-composite plates at steady creep”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 2(19), 53–71 | DOI | MR

[20] Yu. V. Nemirovskii, A. P. Yankovskii, “Equal-stressed reinforcement of metal-composite plates with fibers of constant cross section in steady-state creep”, Mech. Compos. Mater., 44:1 (2008), 9–24 | DOI | MR

[21] Yu. V. Nemirovskii, A. P. Yankovskii, “The steady creep layer-fibrous bendings metal-composites plates”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 2(17), 66–76 | DOI

[22] Yu. V. Nemirovskii, B. S. Reznikov, Strength of Structural Elements Made of Composite Materials, Nauka, Novosibirsk, 1986, 168 pp.

[23] Yu. V. Nemirovskii, A. P. Yankovskii, “Thermoelastoplastic Bending of Complexly Reinforced Plates”, Mech. Compos. Mater., 41:6 (2005), 477–496 | DOI

[24] Yu. V. Nemirovskii, A. P. Yankovskii, “Generalization of the Runge–Kutta methods and their application tointegration of initial-boundary value problems of mathematical physics”, Sib. Zh. Vychisl. Mat., 8:1 (2005), 57–76 | Zbl

[25] Yu. V. Nemirovskii, A. P. Yankovskii, “On some features of the equations of shells reinforced with fibres of constant crosssection”, Mekhanika Kompozitsionnykh Materialov i Konstrukciy, 3:2 (1997), 15–39