Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_2_a18, author = {E. K. Bashkirov and E. V. Grishina and E. Yu. Sochkova}, title = {Atom-field entanglement for {Jaynes-Cummings} model with an intensity-depend coupling}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {169--176}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a18/} }
TY - JOUR AU - E. K. Bashkirov AU - E. V. Grishina AU - E. Yu. Sochkova TI - Atom-field entanglement for Jaynes-Cummings model with an intensity-depend coupling JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 169 EP - 176 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a18/ LA - ru ID - VSGTU_2013_2_a18 ER -
%0 Journal Article %A E. K. Bashkirov %A E. V. Grishina %A E. Yu. Sochkova %T Atom-field entanglement for Jaynes-Cummings model with an intensity-depend coupling %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 169-176 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a18/ %G ru %F VSGTU_2013_2_a18
E. K. Bashkirov; E. V. Grishina; E. Yu. Sochkova. Atom-field entanglement for Jaynes-Cummings model with an intensity-depend coupling. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 169-176. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a18/
[1] M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information, Cambridge University Press, Cambridge, New York, 2011, xxvi+676 pp. | MR | Zbl
[2] D. Schumacker, M. D. Westmoreland, Quantum Processes, Systems, and Information, Cambridge University Press, Cambridge, New York, 2010, xii+469 pp. | MR
[3] E. K. Bashkirov, E. Yu. Sochkova, “Entanglement in two-atom model with degenerate Raman transitions”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 2(23), 135–141 | DOI
[4] S. J. D. Phoenix, P. L. Knight, “Fluctuations and entropy in models of quantum optical resonance”, Ann. Phys., 186:2 (1988), 381–407 | DOI | Zbl
[5] J. Gea-Banacloche, “Collapse and revival of the state vector in the Jaynes-Cummings model: an example of state preparation by a quantum apparatus”, Phys. Rev. Lett., 65:27 (1990), 3385–3388 | DOI
[6] H. T. Dung, N. D. Huyen, “State evolution in the two-photon atom-field interaction with large initial fields”, Phys. Rev. A, 49:1 (1994), 473–480 | DOI
[7] T. Nasreen, K. Zaheer, “Evolution of wave functions in the two-photon Jaynes–Cummings model: The generation of superpositions of coherent states”, Phys. Rev. A, 49:1 (1994), 616–619 | DOI
[8] I. K. Kudryavtsev, A. Lambrecht, H. Moya-Cess, P. L. Knight, “Cooperativity and entanglement of atom-field states”, J. Mod. Opt., 40:8 (1993), 1605–1630 | DOI
[9] H. T. Dung, N. D. Huyen, “Two atom-single mode radiation field interaction. State evolution, level occupation probabilities and emission spectra”, J. Mod. Opt., 41:3 (1994), 453–469 | DOI
[10] E. K. Bashkirov, M. S. Rusakova, “Atom-field entanglement in two-atom Jaynes–Cummings model with nondegenerate two-photon transitions”, Opt. Comm., 281:17 (2008), 4380–4386 | DOI
[11] E. K. Bashkirov, “Entanglement in degenerate two-photon Tavis–Cummings model”, Phys. Scr., 82:1 (2010), 015401 | DOI | Zbl
[12] E. K. Bashkirov, M. S. Rusakova, “Entanglement for two-atom Tavis–Cummings model with degenerate two-photon transitions in the presence of the Stark shift”, Optik, 123:19 (2012), 1694–1699 | DOI
[13] S. Haroche, J.-M. Raimond, Exploring the Quantum. Atoms, Cavities and Photons, Cambridge University Press, Cambridge, New York, 2010, x+605 pp. | MR
[14] A. Stute, B. Casabone, P. Schindler, T. Monz, P. O. Schmidt, B. Brandstätter, T. E. Northup, R. Blatt, “Tunable ion-photon entanglement in an optical cavity”, Nature, 485:7399 (2012), 482–485, arXiv: [quant-ph] 1301.0275 | DOI
[15] L. Li, Y. O. Dudin, A. Kuzmich, “Entanglement between light and an optical atomic excitation”, Nature, 498:7455 (2013), 466–469 | DOI
[16] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J.-M. Raimond, S. Haroche, “Step-by-Step Engineered Multiparticle Entanglement”, Science, 288:5473 (2000), 2024–2028 | DOI
[17] B. B. Blinov, D. L. Moehring, L.-M. Duan, C. Monroe, “Observation of entanglement between a single trapped atom and a single photon”, Nature, 428:6979 (2004), 153–157 | DOI
[18] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit”, Nature, 466:7307 (2010), 730–734 | DOI
[19] J. M. Fink, M. Göppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, A. Wallraff, “Climbing the Jaynes–Cummings ladder and observing its $\sqrt{n}$ nonlinearity in a cavity QED system”, Nature, 454:7202 (2008), 315–318, arXiv: [cond-mat.mes-hall] 0902.1827 | DOI