Asymptotic methods of nonlinear fracture mechanics: results, contemporary state and perspectives
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 156-168.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the brief review of the important results of nonlinear fracture mechanics recently obtained by the asymptotic methods and perturbation techniques is given. The asymptotic solutions of the whole class of crack problems are discussed. Applications of the asymptotic analysis for crack problems of nonlinear fracture mechanics such that crack tip fields in damaged medium, fatigue crack growth problems in damaged medium, nonlinear eigenvalue problems arising from fracture mechanics analysis, nonlinear eigenvalue analysis including higher order terms are elucidated.
Keywords: asymptotic methods, nonlinear fracture mechanics, crack tip stress field, nonlinear eigenvalue problems.
@article{VSGTU_2013_2_a17,
     author = {L. V. Stepanova and E. M. Adylina},
     title = {Asymptotic methods of nonlinear fracture mechanics: results, contemporary state and perspectives},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {156--168},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a17/}
}
TY  - JOUR
AU  - L. V. Stepanova
AU  - E. M. Adylina
TI  - Asymptotic methods of nonlinear fracture mechanics: results, contemporary state and perspectives
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 156
EP  - 168
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a17/
LA  - ru
ID  - VSGTU_2013_2_a17
ER  - 
%0 Journal Article
%A L. V. Stepanova
%A E. M. Adylina
%T Asymptotic methods of nonlinear fracture mechanics: results, contemporary state and perspectives
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 156-168
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a17/
%G ru
%F VSGTU_2013_2_a17
L. V. Stepanova; E. M. Adylina. Asymptotic methods of nonlinear fracture mechanics: results, contemporary state and perspectives. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 156-168. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a17/

[1] H. D. Bui, Fracture Mechanics: Inverse Problems and Solutions, Solid Mechanics and Its Applications, 139, Springer, Dordrecht, 2006, xxiii+398 pp. ; Kh. D. Byui, Mekhanika razrusheniya: Obratnye zadachi i resheniya, per. s angl. L. V. Stepanovoi, Fizmatlit, Moskva, 2011, 412 pp. | Zbl

[2] J. Li, N. Recho, Méthodes asymptotiques en mécanique de la rupture, Hermès-Lavoisier, Paris, 2002, 262 pp.

[3] G. C. Sih, “Crack tip mechanics based on progressive damage of arrow: Hierarchy of singularities and multiscale segment”, J. Theoret. Appl. Fract. Mech., 51:1 (2009), 11–32 | DOI

[4] G. C. Sih, X. S. Tang, “Simultaneity of multiscaling for macro–meso–micro damage model represented by strong singularities”, J. Theoret. Appl. Fract. Mech., 42:3 (2004), 199–225 | DOI

[5] G. C. Sih, X. S. Tang, “Weak and strong singularities reflecting multiscale damage: micro-boundary conditions for free–free, fixed–fixed and free–fixed constraints”, J. Theoret. Appl. Fract. Mech., 43:1 (2005), 5–62 | DOI

[6] I. I. Argatov, Introduction to Asymptotic Modelling in Mechanics, Polytechnics, St. Petersburg, 2004, 302 pp.

[7] L. V. Stepanova, Mathematical methods of fracture mechanics, Fizmatlit, Moscow, 2009, 336 pp. | Zbl

[8] A. Flamant, “Sur la répartition des pressions dans un solide rectangulaire chargé transversalement”, Compte. Rendu. Acad. Sci. Paris, 114 (1892), 1465–1468

[9] S. P Timoshenko, J. N. Goodier, Theory of elasticity, McGraw-Hill, New York, 1970, 567 pp. ; S. P. Timoshenko, Dzh. Guder, Teoriya uprugosti, Nauka, M., 1979, 560 pp. | Zbl

[10] J. H. A. Brahtz, “Stress distribution in a reentrant corner”, Trans. Amer. Soc. Mech. Eng., 55 (1933), 31–71

[11] M. L. Williams, “Stress singularities resulting from various boundary conditions in angular corners of plates in extension”, J. Appl. Mech., ASME, 74 (1952), 526–528

[12] M. L. Williams, “On the stress distribution at the base of a stationary crack”, J. Appl. Mech., ASME, 24 (1957), 109–114 | MR | Zbl

[13] W. R. Dean, P. E. Montagnon, “On the steady motion of viscous liquid in a corner”, Proc. Cambridge Philos. Soc., 1948, no. 45, 389–395 | DOI | MR

[14] J. M. Hutchinson, “Singular behaviour at the end of tensile crack in a hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 13–31 | DOI | Zbl

[15] J. M. Hutchinson, “Plastic stress and strain fields at a crack tip”, J. Mech. Phys. Solids, 16:5 (1968), 337–347 | DOI

[16] J. R. Rice, G. F. Rosengren, “Plane strain deformation near a crack tip in a power-law hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 1–12 | DOI | Zbl

[17] A. Carpinteri, M. Paggi, “Asymptotic analysis in Linear Elasticity: From the pioneering studies by Wieghardt and Irwin until today”, Engn. Fract. Mech., 76:12 (2009), 1771–1784 | DOI

[18] Z. Niu, C. Cheng, N. Recho, “A new boundary element approach of modelling singular stress fields of plane V-notch problems”, Int. J. Solids Struct., 46:16 (2009), 2999–3008 | DOI | MR | Zbl

[19] G. Hello, M. B. Taha, J. M. Roelandt, “Analytical determination of coefficients in crack-tip stress expansions for a finite crack in an infinite plane medium”, Int. J. Solids Struct., 49:3–4 (2012), 556–566 | DOI

[20] V. N. Shlyannikov, “Mixed-modes crack growth under complex stress strain state (Review)”, Zavod. Lab., 56 (1990), 77–90

[21] V. N. Shlyannikov, Computational Mechanics of Deformation and Fracture, Kazan State Power Engn. Univ., Kazan, 2002, 228 pp.

[22] V. N. Shlyannikov, S. Yu. Kislova, “Mode mixity parameters for mathematical crack type”, Izv. Saratov. Univ. Mat. Mekh. Inform., 9:1 (2009), 77–84

[23] C. F. Shih, Elastic-plastic analysis of combined mode crack problems, Ph. D. Thesis, Harvard University, Cambridge, M.A., 1973

[24] C. F. Shih, “Small scale yielding analysis of mixed mode plane-strain crack problems”, Fracture Analysis, Proceedings of the National Symposium on Fracture Mechanics. Part 2 (College Park, Md., August 27–29, 1973), American Society for Testing and Materials, Philadelphia, Pa., 1974, 187–210 pp.

[25] V. I. Astaf'ev, A. N. Krutov, “Stress distribution near the tip of an inclined crack in the nonlinear fracture mechanics”, Mech. Solids, 36:5 (2001), 101–108

[26] V. I. Astaf'ev, Yu. N. Radayev, L. V. Stepanova, Nonlinear Fracture Mechanics, Samara State Univ., Samara, 2001, 632 pp.

[27] V. N. Shlyannikov, Elastic-Plastic Mixed-Mode Fracture Criteria and Parameters, Lecture Notes in Applied and Computational Mechanics, 7, Springer, Berlin, 2003, 246 pp. | Zbl

[28] V. Kumar, M. D. German, C. F. Shih, An engineering approach for elastic-plastic fracture analysis, General Electric Company, NP-1931, Research Project 1237-1, Topical Report, Schenectady, New York, 1981, 71 pp.

[29] E. M. Adylina, S. A. Igonin, L. V. Stepanova, “About a non-linear task on eigenvalues incurring from the analysis of tensions at the fatigue crack tip”, Vestnik SamGU, 2012, no. 3/1(94), 83–102