Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_2_a15, author = {R. S. Saks}, title = {The eigenfunctions of curl, gradient of divergence and {Stokes} operators. {Applications}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {131--146}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a15/} }
TY - JOUR AU - R. S. Saks TI - The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 131 EP - 146 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a15/ LA - ru ID - VSGTU_2013_2_a15 ER -
%0 Journal Article %A R. S. Saks %T The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 131-146 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a15/ %G ru %F VSGTU_2013_2_a15
R. S. Saks. The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 131-146. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a15/
[1] O. A. Ladyzhenskaya, Mathematical questions of the dynamics of a viscous incompressible fluid, Nauka, Moscow, 1970, 288 pp. | MR
[2] S. Chandrasekhar, “On force-free magnetic fields”, Proc. Nat. Ac. Sci. USA, 42:1 (1956), 1–5 | DOI | MR | Zbl
[3] J. B. Taylor, “Relaxation of Toroidal Plasma and Generation of Reverse Magnetic Fields”, Phys. Rev. Lett., 33:19 (1974), 1139–1141 | DOI
[4] V. V. Kozlov, General vortex theory, Udmurtskiy Universitet, Izhevsk, 1998, 240 pp. | MR
[5] V. V. Pukhnachev, “Symmetries in Navier–Stokes equations”, Uspehi Mehaniki, 4:1 (2006), 6–76
[6] A. S. Makhalov, V. P. Nikolaenko, “Global solubility of the three-dimensional Navier-Stokes equations with uniformly large initial vorticity”, Russian Math. Surveys, 58:2 (2003), 287–318 | DOI | DOI | MR | Zbl
[7] V. Arnold, “Sur la topologie des écoulements stationnaires des fluides parfaits”, C. R. Acad. Sci. Paris, 261 (1965), 17–20 | MR | Zbl
[8] M. Hénon, “Sur la topologie des lignes de courant dans un cas particulier”, C. R. Acad. Sci. Paris, 262 (1966), 312–314
[9] R. S. Saks, “The boundary value problems for the system $\mathop{\rm rot} u+\lambda u=h$”, Soviet Math. Dokl., 12:5 (1971), 1240–1244 | MR | Zbl
[10] R. S. Saks, “The boundary value problems for the system $\mathop{\rm rot} u+\lambda u=h$”, Differ. Uravn., 8:1 (1972), 126–133 | MR | Zbl
[11] B. R. Vainberg, V. V. Grushin, “Uniformly nonelliptic problems. I”, Math. USSR-Sb., 1:4 (1967), 543–568 | DOI | MR | Zbl
[12] R. S. Saks, “Spectrum of the curl operator in a ball under sliding conditions and eigenvalues for oscillations of an elastic ball fixed on the boundary”, Trudy Conf. Complex Analysis, Differential Equations, and Related Topics, IV, Ufa, 2000, 61–68
[13] S. Chandrasekhar, P. S. Kendall, “On force-free magnetic fields”, Astrophys. J., 126 (1957), 457–460 | DOI | MR
[14] D. Montgomery, L. Turner, G. Vahala, “Three-dimentional magnetohydrodyamic turbulence in cylindrical geometry”, Phys. Fluids, 21:5 (1978), 757–764 | DOI | Zbl
[15] P. E. Berhin, “A selfadjoint boundary-value problem for the system $^*du+\lambda u=f$”, Sov. Math., Dokl., 16:1 (1975), 557–559 | MR | MR | Zbl
[16] Z. Yoshida, Y. Giga, “Remark on spectra of operator rot”, Math. Z., 204:2 (1990), 235–245 | DOI | MR | Zbl
[17] R. Picard, “On a selfadjoint realization of curl and some of its applications”, Riceche di Matematica, XLVII (1998), 153–180 | MR | Zbl
[18] O. A. Ladyzhenskaya, “Construction of Bases in Spaces of Solenoidal Vector Fields”, J. Math. Sci. (N. Y.), 130:4 (2005), 4827–4835 | DOI | MR | Zbl
[19] R. S. Saks, “Solution of the spectral problem for the curl and Stokes operators with periodic boundary conditions”, J. Math. Sci. (N. Y.), 136:2 (2006), 3794–3811 | DOI | MR | Zbl
[20] R. S. Saks, “Global solutions of the Navier–Stokes equations in a uniformly rotating space”, Theoret. and Math. Phys., 162:2 (2010), 163–178 | DOI | DOI | MR | Zbl
[21] R. S. Saks, “Cauchy problem for the Navier–Stokes equations, Fourier method”, Ufa Mathematical Journal, 3:1 (2011), 51–77 | Zbl
[22] R. S. Saks, “Spectral problems for the curl and Stokes operators”, Dokl. Math., 76:2 (2007), 724–728 | DOI | MR | Zbl
[23] R. Temam, Navier–Stokes equations. Theory and numerical analysis, Mir, Moscow, 1981, 408 pp. | MR | Zbl
[24] V. S. Vladimirov, The equations of mathematical physics, Nauka, Moscow, 1988, 512 pp. | MR
[25] H. Weyl, “The method of orthogonal projection in potential theory”, Duke Math., 7 (1940), 411–444 | DOI | MR | Zbl
[26] R. S. Saks, “On properties of the generalized elliptic pseudo-differential operators on closed manifolds”, J. Math. Sci. (New York), 99:1 (2000), 936–968 | DOI | MR | Zbl
[27] V. A. Solonnikov, “Overdetermined elliptic boundary value problems”, Boundary-value problems of mathematical physics and related problems of function theory. Part 5, Zap. Nauchn. Sem. LOMI, 21, “Nauka”, Leningrad. Otdel., Leningrad, 1971, 112–158 | MR | Zbl