The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 131-146

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the spectral problems for curl, gradient of divergence and Stokes operators. The eigenvalues are defined by zeroes of half-integer order Bessel functions and derivatives thereof. The eigenfunctions are given in an explicit form by half-integer order Bessel functions and spherical harmonics. Their applications are described. The completeness of eigenfunctions of curl operator in $\mathbf{L}_{2}(B)$ is proved.
Keywords: curl, Stokes operator, eigenvalues and eigenfunctions of operators, Fourier series.
Mots-clés : gradient of divergence
@article{VSGTU_2013_2_a15,
     author = {R. S. Saks},
     title = {The eigenfunctions of curl, gradient of divergence and {Stokes} operators. {Applications}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {131--146},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a15/}
}
TY  - JOUR
AU  - R. S. Saks
TI  - The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 131
EP  - 146
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a15/
LA  - ru
ID  - VSGTU_2013_2_a15
ER  - 
%0 Journal Article
%A R. S. Saks
%T The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 131-146
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a15/
%G ru
%F VSGTU_2013_2_a15
R. S. Saks. The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 131-146. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a15/