Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_2_a14, author = {E. V. Piskovskiy}, title = {Rolling regime in the {Higgs} model with friction}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {127--130}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a14/} }
TY - JOUR AU - E. V. Piskovskiy TI - Rolling regime in the Higgs model with friction JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 127 EP - 130 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a14/ LA - ru ID - VSGTU_2013_2_a14 ER -
E. V. Piskovskiy. Rolling regime in the Higgs model with friction. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 127-130. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a14/
[1] V. A. Rubakov, Classical gauge fields, URSS, Moscow, 335 pp. | MR
[2] V. Mukhanov, Physical foundations of cosmology, Cambridge Univ. Press, Cambridge, 2005, xix+421 pp. | MR | Zbl
[3] D. S. Gorbunov, V. A. Rubakov, Introduction to the Theory of the Early Universe. Hot Big Bang Theory, World Scientific, Singapore, 2011, 504 pp.
[4] I. Ya. Aref'eva, I. V. Volovich, “Cosmological daemon”, JHEP, 2011:08 (2011), 102, arXiv: [hep-th] 1103.0273 | DOI | Zbl
[5] I. Ya. Aref'eva, N. V. Bulatov, R. V. Gorbachev, FRW cosmology with non-positively defined Higgs potentials, E-print, 2011, 40 pp., arXiv: [hep-th] 1112.5951
[6] I. Ya. Aref'eva, I. V. Volovich, “Asymptotic expansion of solutions in a rolling problem”, Proc. Steklov Inst. Math., 277 (2012), 1–15 | DOI | MR | Zbl
[7] I. Ya. Aref'eva, I. V. Volovich, E. V. Piskovskiy, “Rolling in the Higgs model and elliptic functions”, Theoret. and Math. Phys., 172:1 (2012), 1001–1016, arXiv: [hep-th] 1202.4395 | DOI | DOI | MR | MR | Zbl
[8] A. M. Zhuravskii, Handbook of Elliptic Functions, AN SSSR, Moscow, Leningrad, 1941, 235 pp.
[9] N. M. Krylov, N. N. Bogolyubov, Introduction to non-linear mechanics, AN USSR, Kiev, 1937, 353 pp.
[10] N. N. Bogolyubov, Ju. A. Mitropol'skiy, Asymptotic methods in the theory of nonlinear oscillations, Nauka, Moscow, 1974, 503 pp. | MR