Rolling regime in the Higgs model with friction
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 127-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Higgs model with friction is considered. The hyperbolic analog of the Krylov-Bogoliubov averaging method is used to obtain an approximate solution. The obtained solution is compared to a numerical solution of the considered equation.
Keywords: rolling regime, the Higs model with friction, hyperbolic analog of the Krylov-Bogoliubov averaging method.
@article{VSGTU_2013_2_a14,
     author = {E. V. Piskovskiy},
     title = {Rolling regime in the {Higgs} model with friction},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {127--130},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a14/}
}
TY  - JOUR
AU  - E. V. Piskovskiy
TI  - Rolling regime in the Higgs model with friction
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 127
EP  - 130
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a14/
LA  - ru
ID  - VSGTU_2013_2_a14
ER  - 
%0 Journal Article
%A E. V. Piskovskiy
%T Rolling regime in the Higgs model with friction
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 127-130
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a14/
%G ru
%F VSGTU_2013_2_a14
E. V. Piskovskiy. Rolling regime in the Higgs model with friction. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 127-130. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a14/

[1] V. A. Rubakov, Classical gauge fields, URSS, Moscow, 335 pp. | MR

[2] V. Mukhanov, Physical foundations of cosmology, Cambridge Univ. Press, Cambridge, 2005, xix+421 pp. | MR | Zbl

[3] D. S. Gorbunov, V. A. Rubakov, Introduction to the Theory of the Early Universe. Hot Big Bang Theory, World Scientific, Singapore, 2011, 504 pp.

[4] I. Ya. Aref'eva, I. V. Volovich, “Cosmological daemon”, JHEP, 2011:08 (2011), 102, arXiv: [hep-th] 1103.0273 | DOI | Zbl

[5] I. Ya. Aref'eva, N. V. Bulatov, R. V. Gorbachev, FRW cosmology with non-positively defined Higgs potentials, E-print, 2011, 40 pp., arXiv: [hep-th] 1112.5951

[6] I. Ya. Aref'eva, I. V. Volovich, “Asymptotic expansion of solutions in a rolling problem”, Proc. Steklov Inst. Math., 277 (2012), 1–15 | DOI | MR | Zbl

[7] I. Ya. Aref'eva, I. V. Volovich, E. V. Piskovskiy, “Rolling in the Higgs model and elliptic functions”, Theoret. and Math. Phys., 172:1 (2012), 1001–1016, arXiv: [hep-th] 1202.4395 | DOI | DOI | MR | MR | Zbl

[8] A. M. Zhuravskii, Handbook of Elliptic Functions, AN SSSR, Moscow, Leningrad, 1941, 235 pp.

[9] N. M. Krylov, N. N. Bogolyubov, Introduction to non-linear mechanics, AN USSR, Kiev, 1937, 353 pp.

[10] N. N. Bogolyubov, Ju. A. Mitropol'skiy, Asymptotic methods in the theory of nonlinear oscillations, Nauka, Moscow, 1974, 503 pp. | MR