On convergence of the iterative process for the third order pseudo-parabolic equation with nonlocal boundary value conditions in a multidimensional domain
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 113-119.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the nonlocal boundary value problem for the pseudo-parabolic equation of the third-order in a multidimensional domain is considered. Using an iterative method, the solving process of the nonlocal boundary value problem is reduced to solving the series of some local problems. An a priori estimate for the convergence of the iterative method in the norm $W^1_2(G)$ is obtained.
Keywords: boundary value problems, a priori estimate, iteration process, third order equation
Mots-clés : nonlocal condition, pseudo-parabolic equation.
@article{VSGTU_2013_2_a12,
     author = {M. H. Beshtokov},
     title = {On convergence of the iterative process for the third order pseudo-parabolic equation with nonlocal boundary value conditions in a multidimensional domain},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {113--119},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a12/}
}
TY  - JOUR
AU  - M. H. Beshtokov
TI  - On convergence of the iterative process for the third order pseudo-parabolic equation with nonlocal boundary value conditions in a multidimensional domain
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 113
EP  - 119
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a12/
LA  - ru
ID  - VSGTU_2013_2_a12
ER  - 
%0 Journal Article
%A M. H. Beshtokov
%T On convergence of the iterative process for the third order pseudo-parabolic equation with nonlocal boundary value conditions in a multidimensional domain
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 113-119
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a12/
%G ru
%F VSGTU_2013_2_a12
M. H. Beshtokov. On convergence of the iterative process for the third order pseudo-parabolic equation with nonlocal boundary value conditions in a multidimensional domain. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 113-119. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a12/

[1] M. Kh. Beshtokov, “On the convergence of the iterative process for one nonlocal boundary value problem for a hyperbolic equation of the third order”, Non-local Boundary Value Problems and Problems of Modern Analysis and Informatics, KBNTs RAN, Nal'chik, 2012, 24–26

[2] D. G. Gordeziani, On methods of resolution of a class of nonlocal boundary value problems, Preprint Tbilis. Gos. Univ., Inst. Prikl. Mat, Tbilisi, 1981, 32 pp. | MR | Zbl

[3] D. G. Gordeziani, “Finite-difference schemes for solving nonlocal boundary value problems (in Russian)”, Tr. Inst. Prikl. Mat. Im. I. N. Vekua, 19 (1987), 20–25 | MR | Zbl

[4] N. Gordeziani, P. Natalini, P. E. Ricci, “Finite-difference methods for solution of nonlocal boundary value problems”, Comp. Math. Appl., 50:8–9 (2005), 1333–1344 | DOI | MR | Zbl

[5] O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Applied Mathematical Sciences, 49, Springer-Verlag, Berlin etc., 1985, 322 pp. | DOI | MR | MR | Zbl