The Laplace' Quasi-operator in Quasi-Sobolev spaces
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 13-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

The quasi-Sobolev spaces notion introduced in the article is based on the quasinorms concept. Completeness of these spaces on the appropriate quasi-norms is proved and the continuous embedding of these spaces is shown in the work. Also Laplace’ and Green’s quasi-operators concepts are introduced; it is shown that these quasi-operators are toplinear isomorphisms.
Mots-clés : quasi-norm, quasi-Banach space, quasi-Sobolev spaces
Keywords: Laplace' quasi-operator, Green’s quasi-operator.
@article{VSGTU_2013_2_a1,
     author = {J. K. K. Al-Delfi},
     title = {The {Laplace'} {Quasi-operator} in {Quasi-Sobolev} spaces},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {13--16},
     publisher = {mathdoc},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a1/}
}
TY  - JOUR
AU  - J. K. K. Al-Delfi
TI  - The Laplace' Quasi-operator in Quasi-Sobolev spaces
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 13
EP  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a1/
LA  - ru
ID  - VSGTU_2013_2_a1
ER  - 
%0 Journal Article
%A J. K. K. Al-Delfi
%T The Laplace' Quasi-operator in Quasi-Sobolev spaces
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 13-16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a1/
%G ru
%F VSGTU_2013_2_a1
J. K. K. Al-Delfi. The Laplace' Quasi-operator in Quasi-Sobolev spaces. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 13-16. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a1/

[1] Kh. Tribel', Interpolation theory, function spaces, differential operators, Mir, Moscow, 1980, 664 pp. | MR

[2] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and quasilinear equations of elliptic type, Nauka, Moscow, 1973, 578 pp. | MR

[3] R. Al-Saphory, A. Al-Janabi, J. Al-Delfi, “Quasi-Banach Space for the Sequence Space $l_p$, where $0

1$”, Journal of Education College, 3, University of Al-Mustansriyah, Baghdad, Iraq, 2007, 285–295