Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_2_a1, author = {J. K. K. Al-Delfi}, title = {The {Laplace'} {Quasi-operator} in {Quasi-Sobolev} spaces}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {13--16}, publisher = {mathdoc}, number = {2}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a1/} }
TY - JOUR AU - J. K. K. Al-Delfi TI - The Laplace' Quasi-operator in Quasi-Sobolev spaces JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 13 EP - 16 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a1/ LA - ru ID - VSGTU_2013_2_a1 ER -
J. K. K. Al-Delfi. The Laplace' Quasi-operator in Quasi-Sobolev spaces. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 2 (2013), pp. 13-16. http://geodesic.mathdoc.fr/item/VSGTU_2013_2_a1/
[1] Kh. Tribel', Interpolation theory, function spaces, differential operators, Mir, Moscow, 1980, 664 pp. | MR
[2] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and quasilinear equations of elliptic type, Nauka, Moscow, 1973, 578 pp. | MR
[3] R. Al-Saphory, A. Al-Janabi, J. Al-Delfi, “Quasi-Banach Space for the Sequence Space $l_p$, where $0
1$”, Journal of Education College, 3, University of Al-Mustansriyah, Baghdad, Iraq, 2007, 285–295