Solutions of anisotropic elliptic equations in~unbounded domains
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 90-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the Dirichlet problem for an anisotropic quasilinear elliptic equations of the second order is considered. The upper estimates for the generalized solution of this Dirichlet problem are received, the closeness is proved for the isotropic case.
Keywords: Dirichlet problem, quasilinear elliptic equation, generalized solution, unbounded domain, decrease of the solution, uniqueness of the solution, Harnack inequality
Mots-clés : anisotropic equation, existence of solution, domain of rotation.
@article{VSGTU_2013_1_a9,
     author = {L. M. Kozhevnikova and A. A. Khadzhi},
     title = {Solutions   of anisotropic elliptic equations in~unbounded domains},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {90--96},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a9/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - A. A. Khadzhi
TI  - Solutions   of anisotropic elliptic equations in~unbounded domains
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 90
EP  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a9/
LA  - ru
ID  - VSGTU_2013_1_a9
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A A. A. Khadzhi
%T Solutions   of anisotropic elliptic equations in~unbounded domains
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 90-96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a9/
%G ru
%F VSGTU_2013_1_a9
L. M. Kozhevnikova; A. A. Khadzhi. Solutions   of anisotropic elliptic equations in~unbounded domains. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 90-96. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a9/

[1] L. M. Kozhevnikova, “Behaviour at infinity of solutions of pseudodifferential elliptic equations in unbounded domains”, Sb. Math., 199:8 (2008), 1169–1200 | DOI | DOI | MR | Zbl

[2] R. Kh. Karimov, L. M. Kozhevnikova, “Behavior on infinity of decision quasilinear elliptical equations in unbounded domain”, Ufimsk. Mat. Zh., 2:2 (2010), 53–66 | MR | Zbl

[3] L. M. Kozhevnikova, A. A. Khadzhi, “Estimate of Dirichlet problem solution for anisotropic quasilinear second-order elliptic equations”, Sb. trudov mezhdunar. shkoly-konferentsii dlya studentov, aspirantov i molodykh uchenykh, 1 (2011), 55–63

[4] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and quasilinear equations of elliptic type, Nauka, Moscow, 1973, 576 pp. | MR

[5] J. Serrin, “Local behaviour of solutions of quasilinear equations”, Acta Math., 111 (1964), 247–302 | DOI | MR | Zbl