Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 82-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to some class of parabolic equations of high order with double nonlinearity which can be represented by a model equation \begin{gather*} \frac{\partial}{\partial t}(|u|^{k-2}u)= \sum_{\alpha=1}^n(-1)^{m_\alpha-1}\frac{\partial^{m_\alpha}}{\partial x_\alpha^{m_\alpha}} \left[\left|\frac{\partial^{m_\alpha} u}{\partial x_\alpha^{m_\alpha}}\right|^{p_\alpha-2} \frac{\partial^{m_\alpha} u}{\partial x_\alpha^{m_\alpha}}\right],\\ m_1,\ldots, m_n\in \mathbb{N},\quad p_n\geq \ldots \geq p_1>k,\quad k>1. \end{gather*} For the solution of the first mixed problem in a cylindrical domain $ D=(0,\infty)$ $\times\Omega, \;\Omega\subset \mathbb{R}_n,$ $n\geq 2,$ with homogeneous Dirichlet boundary condition and finite initial function the highest rate of decay established as $t \to \infty$. Earlier upper estimates were obtained by the authors for anisotropic equation of the second order and prove their accuracy.
Mots-clés : anisotropic equation
Keywords: doubly nonlinear parabolic equations, existence of strong solution, decay rate of solution.
@article{VSGTU_2013_1_a8,
     author = {L. M. Kozhevnikova and A. A. Leont'ev},
     title = {Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {82--89},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a8/}
}
TY  - JOUR
AU  - L. M. Kozhevnikova
AU  - A. A. Leont'ev
TI  - Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 82
EP  - 89
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a8/
LA  - ru
ID  - VSGTU_2013_1_a8
ER  - 
%0 Journal Article
%A L. M. Kozhevnikova
%A A. A. Leont'ev
%T Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 82-89
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a8/
%G ru
%F VSGTU_2013_1_a8
L. M. Kozhevnikova; A. A. Leont'ev. Solutions of anisotropic parabolic equations with double non-linearity in unbounded domains. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 82-89. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a8/

[1] L. M. Kozhevnikova, F. Kh. Mukminov, “Estimates of the stabilization rate as $t\to\infty$ of solutions of the first mixed problem for a quasilinear system of second-order parabolic equations”, Sb. Math., 191:2 (2000), 235–273 | DOI | DOI | MR | Zbl

[2] L. M. Kozhevnikova, “Stabilization of a solution of the first mixed problem for a quasi-elliptic evolution equation”, Sb. Math., 196:7 (2005), 999–1032 | DOI | DOI | MR | Zbl

[3] R. Kh. Karimov, L. M. Kozhevnikova, “Stabilization of solutions of quasilinear second order parabolic equations in domains with non-compact boundaries”, Sb. Math., 201:9 (2010), 1249–1271 | DOI | DOI | MR | Zbl

[4] E. R. Andriyanova, F. Kh. Mukminov, “The lower estimate of decay rate of solutions for doubly nonlinear parabolic equations”, Ufimsk. Mat. Zh., 3:3 (2011), 3–14 | Zbl

[5] L. M. Kozhevnikova, A. A. Leontiev, “Estimates of solutions of an anisotropic doubly nonlinear parabolic equation”, Ufimsk. Mat. Zh., 3:4 (2011), 64–85 | Zbl

[6] L. M. Kozhevnikova, A. A. Leontiev, “Decay of solution of anisotropic doubly nonlinear parabolic equation in unbounded domains”, Ufimsk. Mat. Zh., 5:1 (2013), 65–83

[7] L. Nirenberg, “On elliptic partial differential equations”, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser, 13 (1959), 115–162 | Zbl