The Dunkl convolution operators and multipoint de la Vall\'ee--Poussin problem
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 70-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dunkl operator as an object of mathematical physics is considered, we study the kernel and the surjectivity of Dunkl convolution operators in the space of entire functions and the space of entire functions of exponential type. The main result is the solution of the multipoint de la Vallée–Poussin problem for Dunkl convolution operators in the space of entire functions.
Keywords: Dunkl operators, Dunkl convolution, sufficient sets, space of entire functions.
Mots-clés : de la Vallée–Poussin (Cauchy) problem
@article{VSGTU_2013_1_a7,
     author = {K. R. Zabirova and V. V. Napalkov},
     title = {The {Dunkl} convolution operators and multipoint de la {Vall\'ee--Poussin} problem},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {70--81},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a7/}
}
TY  - JOUR
AU  - K. R. Zabirova
AU  - V. V. Napalkov
TI  - The Dunkl convolution operators and multipoint de la Vall\'ee--Poussin problem
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 70
EP  - 81
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a7/
LA  - ru
ID  - VSGTU_2013_1_a7
ER  - 
%0 Journal Article
%A K. R. Zabirova
%A V. V. Napalkov
%T The Dunkl convolution operators and multipoint de la Vall\'ee--Poussin problem
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 70-81
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a7/
%G ru
%F VSGTU_2013_1_a7
K. R. Zabirova; V. V. Napalkov. The Dunkl convolution operators and multipoint de la Vall\'ee--Poussin problem. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 70-81. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a7/

[1] L. Lapointe, L. Vinet, “Exact operator solution of the Calogero–Sutherland model”, Commun. Math. Phys., 178:2 (1996), 425–452 | DOI | MR | Zbl

[2] J. J. Betancor, M. Sifi, K. Triméche, “Hypercyclic and chaotic convolution operators associated with the Dunkl operators on $\mathbb C$”, Acta Math. Hung., 106:1–2 (2005), 101–116 | DOI | MR | Zbl

[3] V. V. Napalkov, V. V. Napalkov (jun.), “Dunkl operators as convolutions”, Dokl. Math., 78:3 (2008), 856–858 | DOI | MR | Zbl

[4] V. V. Napalkov, Convolution equations in multidimensional spaces, Nauka, Moscow, 1982, 240 pp. | MR | Zbl

[5] J. Dieudonné, L. Schwartz, “La dualité dans les espaces ($\mathcal F$) et ($\mathcal LF$)”, Ann. Inst. Fourier, 1 (1949), 61–101 | DOI | MR | Zbl

[6] L. Euler, “De integratione aequationum differentialum altiorum gradum”, Miscellanea Berol., 7 (1743), 193–242

[7] H. S. Shapiro, “An algebraic theorem of Fisher, and the holomorphic Goursat problem”, Bull. Lond. Math. Soc., 21:6 (1989), 513–537 | DOI | MR | Zbl

[8] V. V. Napalkov, “The strict topology in certain weighted spaces of functions”, Math. Notes, 39:4 (1986), 291–296 | DOI | MR | Zbl

[9] O. V. Epifanov, “On the existence of the continuous right-inverse for an operator in a class of locally convex spaces”, Izv. Sev.-Kavk. Nauchn. Tsentra Vyssh. Shk., Estestv. Nauki, 1991, no. 3(75), 3–4 | MR | Zbl