Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a6, author = {A. K. Gushchin}, title = {$L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation solutions}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {53--69}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a6/} }
TY - JOUR AU - A. K. Gushchin TI - $L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation solutions JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 53 EP - 69 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a6/ LA - ru ID - VSGTU_2013_1_a6 ER -
%0 Journal Article %A A. K. Gushchin %T $L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation solutions %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 53-69 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a6/ %G ru %F VSGTU_2013_1_a6
A. K. Gushchin. $L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation solutions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 53-69. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a6/
[1] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80:4 (1958), 921–930 | DOI | MR | Zbl
[2] L. Carleson, “Interpolation by bounded analytic functions and the corona problem”, Ann. of Math., 76:3 (1962), 547–559 | DOI | MR | Zbl
[3] L. Hormander, “$L^p$-estimates for (pluri-) subharmonic functions”, Math. scand., 20 (1967), 65–78 | MR | Zbl
[4] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl
[5] A. K. Gushchin, V. P. Mikhailov, “On solvability of nonlocal problems for a second-order elliptic equation”, Russian Acad. Sci. Sb. Math., 81:1 (1995), 101–136 | DOI | MR | Zbl
[6] A. K. Gushchin, V. P. Mikhailov, “Internal estimates of general solutions of second order elliptic equation”, Vestn. SamGU. Yestestvennonauchnaya seriya, 2008, no. 8/1(67), 76–94
[7] V. P. Mikhailov, “The Dirichlet problem for a second order elliptic equation”, Differents. Uravneniya, 12:10 (1976), 1877–1891 | MR
[8] A. K. Gushchin, “On the interior smoothness of solutions to second-order elliptic equations”, Siberian Math. J., 46:5 (2005), 826–840 | DOI | MR | Zbl
[9] A. K. Gushchin, “A strengthening of the interior Hölder continuity property for solutions of the Dirichlet problem for a second-order elliptic equation”, Theoret. and Math. Phys., 157:3 (2008), 1655–1670 | DOI | DOI | MR | Zbl
[10] A. K. Gushchin, V. P. Mikhailov, “On boundary values in $L_p$, $p>1$, of solutions of elliptic equations”, Math. USSR-Sb., 36:1 (1980), 1–19 | DOI | MR | Zbl | Zbl
[11] A. K. Gushchin, V. P. Mikhailov, “On boundary values of solutions of elliptic equations”, Generalized functions and their applications in mathematical physics, Proceedings of the International Conference, Moscow, 1981, 189–205
[12] I. M. Petrushko, “On boundary values in $L_p$, $p>1$, of solutions of elliptic equations in domains with a Lyapunov boundary”, Math. USSR-Sb., 48:2 (1984), 565–585 | DOI | MR | Zbl | Zbl
[13] Yu. A. Mikhailov, “Boundary values in $L_p$, $p>1$, of solutions of a second-order linear elliptic equation”, Differents. Uravneniya, 19:2 (1983), 318–337 | MR
[14] Yu. A. Alkhutov, V. A. Kondrat'ev, “Solvability of the Dirichlet problem for second-order elliptic equations in a convex domain”, Differ. Equ., 28:5 (1992), 650–662 | MR
[15] Yu. A. Alkhutov, “$L_p$-estimates of the solution of the Dirichlet problem for second-order elliptic equations”, Sb. Math., 189:1 (1998), 1–17 | DOI | DOI | MR | Zbl
[16] A. K. Gushchin, “On the solvability of the Dirichlet problem with a boundary function from $L\sb p$ for a second-order elliptic equation”, Dokl. Math., 83:2 (2011), 219–221 | DOI | MR | Zbl
[17] A. K. Gushchin, “The Dirichlet problem for a second-order elliptic equation with an $L_p$ boundary function”, Sb. Math., 203:1 (2012), 1–27 | DOI | DOI | MR | Zbl
[18] E. De Giorgi, “Sulla differenziabilità e l'analiticità delle estremali degli integrali multipli regolari”, Mem. Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur, 3:3 (1957), 25–43 | MR | Zbl
[19] J. Nash, “Continuity of solutions of parabolic and elliptic equations”, Amer. J. Math, 80:4 (1958), 931–954 | DOI | MR | Zbl
[20] J. Moser, “A new proof of De Giorgi's theorem concerning the regularity problem for elliptic differential equations”, Comm. Pure Appl. Math, 13:3 (1960), 457–468 | DOI | MR | Zbl
[21] A. K. Gushchin, “Estimates of the nontangential maximal function for solutions of a second-order elliptic equation”, Dokl. Math., 86:2 (2012), 667–669 | DOI | MR | Zbl
[22] Linear and quasilinear equations of elliptic type, Nauka, Moscow, 1973, 576 pp. | MR
[23] D. Gilbarg, N. Trudinger, Elliptic partial differentiol equations of second order, Springer Verlag, Berlin, Heidelberg, New York, Tokyo, 1983, 529 pp. ; D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989, 464 pp. | MR | Zbl | MR | Zbl
[24] V. P. Mikhailov, A. K. Gushchin, “Additional chapters of course “Equations of Mathematical Physics””, Lekts. Kursy NOC, 7, Steklov Math. Inst., RAS, Moscow, 2007, 3–144 | DOI | DOI
[25] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30, Prinston University Press, Prinston, N.J., 1970, xiv+290 pp. ; I. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973, 344 pp. | MR | MR
[26] D. L. Burkholder, R. F. Gundy, “Distribution function inequalities for the area integral”, Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI, Studia Math., 44 (1972), 527–544 . | MR | Zbl
[27] B. E. J. Dahlberg, “Weighted norm inequalities for the Lusin area integral and the nontangential maximal functions for functions harmonic in a Lipschitz domain”, Studia Math., 67:3 (1980), 297–314 | MR | Zbl
[28] V. Yu. Shelepov, “On boundary properties of solutions of elliptic equations in multidimensional domains representable by means of the difference of convex functions”, Math. USSR-Sb., 61:2 (1988), 437–460 | DOI | MR | Zbl | Zbl
[29] H. Fatou, “Séries trigonometriques et séries de Taylor”, Acta Math., 30:1 (1906), 335–400 | DOI | MR | Zbl
[30] I. I. Privalov, The Cauchy Integral, Saratov, 1919, 96 pp.
[31] E. M. Stein, G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, 32, Prinston University Press, Prinston, N.J., 1971, x+297 pp. ; I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974, 333 pp. | MR | Zbl
[32] V. A. Kondratiev, E. M. Landis, “Qualitative theory of second order linear partial differential equations”, Partial differential equations – 3, Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. Fund. Napr., 32, VINITI, Moscow, 1988, 99–215 | MR | Zbl
[33] N. K. Nikol'skiy, Lectures on the shift operator, Nauka, Moscow, 1980, 384 pp. | MR
[34] J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, 96, Academic Press, Inc., New York, London, 1981, xvi+467 pp. ; Dzh. Garnet, Ogranichennye analiticheskie funktsii, Mir, M., 1984, 469 pp. | MR | Zbl | MR
[35] V. Zh. Dumanyan, “Solvability of the Dirichlet problem for a general second-order elliptic equation”, Sb. Math., 202:7 (2011), 1001–1020 | DOI | DOI | MR | Zbl
[36] A. K. Gushchin, V. P. Mikhailov, “On the continuity of the solutions of a class of non-local problems for an elliptic equation”, Sb. Math., 186:2 (1995), 197–219 | DOI | MR | Zbl
[37] A. K. Gushchin, V. P. Mikhailov, “On the unique solvability of nonlocal problems for an elliptic equation”, Dokl. Akad. Nauk, 351:1 (1996), 7–8 | MR
[38] A. K. Gushchin, “A condition for the complete continuity of operators arising in nonlocal problems for elliptic equations”, Dokl. Math., 62:1 (2000), 32–34 | MR | MR | Zbl
[39] A. K. Gushchin, “A condition for the compactness of operators in a certain class and its application to the analysis of the solubility of non-local problems for elliptic equations”, Sb. Math., 193:5 (2002), 649–668 | DOI | DOI | MR | Zbl
[40] A. K. Gushchin, “$L_p$-estimates for solutions of second-order elliptic equation Dirichlet problem”, Theoret. and Math. Phys., 174:2 (2013), 209–219 | DOI | DOI | Zbl