Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a5, author = {A. A. Gimaltdinova}, title = {Tricomi problem for a mixed type equation with two lines of type changing in a special area}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {46--52}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a5/} }
TY - JOUR AU - A. A. Gimaltdinova TI - Tricomi problem for a mixed type equation with two lines of type changing in a special area JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 46 EP - 52 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a5/ LA - ru ID - VSGTU_2013_1_a5 ER -
%0 Journal Article %A A. A. Gimaltdinova %T Tricomi problem for a mixed type equation with two lines of type changing in a special area %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 46-52 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a5/ %G ru %F VSGTU_2013_1_a5
A. A. Gimaltdinova. Tricomi problem for a mixed type equation with two lines of type changing in a special area. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 46-52. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a5/
[1] A. V. Bicadze, “On some problems for mixed type equations”, Dokl. Akad. Nauk SSSR, 70:4 (1950), 561–564 | Zbl
[2] T. Sh. Kal'menov, “The spectrum of the Tricomi problem for the Lavrent'ev–Bicadze equation”, Differ. Uravn., 13:8 (1977), 1418–1425 | MR | Zbl
[3] S. M. Ponomarev, “On the eigenvalue problem for the Lavrent'ev–Bicadze equation”, Dokl. Akad. Nauk SSSR, 238:6 (1978), 1299–1302 | MR | Zbl
[4] E. I. Moiseev, Equations of mixed type with a spectral parameter, Moscow State Univ., Moscow, 1988, 150 pp. | MR
[5] K. B. Sabitov, “Tricomi problem for the Lavrent'ev-Bitsadze equation with a spectral parameter”, Differ. Equ., 22 (1986), 1380-1386 | MR | Zbl
[6] K. B. Sabitov, “Construction in explicit form of solutions of the Darboux problems for the telegraph equation and its application in the inversion of integral equations. I”, Differ. Equ., 26:6 (1990), 747–755 | MR | Zbl | Zbl
[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and quasilinear equations of elliptic type, Nauka, Moscow, 1973, 576 pp. | MR
[8] Yu. U. Talmirzaev, On the theory of boundary value problems for equations of mixed type with a smooth line of degeneracy, Ph.D. Thesis (Phys. Math.), AN Uz.SSR. In-t matematiki, Tashkent, 1980, 16 pp.