Space localization of the quantum particle
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 387-397.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown, that in addition to the evolution quantum object motion wave equation in the integral form can describe the wave function reduction as a physical process. Such description is represented for the space localization process, taking place when the space coordinate is measured, and it is shown, that collapse arises, as the result of the quantum particle and corresponding measuring instrument interaction. This physical phenomenon mathematical image looks like the instantaneous transformation of the virtual paths set to the subset, determined by the measuring process conditions, when the macroscopic changes appears in the measuring instrument.In conventional quantum mechanics such Hilbert space collapse itself corresponds to such reduction phenomenon.
Keywords: wave function collapse, space-time description of the space localization, reduction process nonlocal property.
@article{VSGTU_2013_1_a39,
     author = {A. Yu. Samarin},
     title = {Space localization of the quantum particle},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {387--397},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a39/}
}
TY  - JOUR
AU  - A. Yu. Samarin
TI  - Space localization of the quantum particle
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 387
EP  - 397
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a39/
LA  - ru
ID  - VSGTU_2013_1_a39
ER  - 
%0 Journal Article
%A A. Yu. Samarin
%T Space localization of the quantum particle
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 387-397
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a39/
%G ru
%F VSGTU_2013_1_a39
A. Yu. Samarin. Space localization of the quantum particle. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 387-397. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a39/

[1] J. von Neumann, Mathematical foundations of quantum mechanics, Nauka, Moscow, 1964, 367 pp. | MR

[2] R. Penrose, The road to reality. A complete guide to the laws of the universe, Alfred A. Knopf, Inc., New York, 2005, xxviii+1099 pp. | MR | Zbl

[3] A. Bassi, G. C. Girardi, “Dynamical reduction models”, Phys. Rep., 379:5–6 (2003), 257–426 | DOI | MR | Zbl

[4] G. C. Ghirardi, A. Rimini, T. Weber, “Unified dynamics for microscopic and macroscopic systems”, Phys. Rev. D, 34:2 (1986), 470–491 | DOI | MR | Zbl

[5] D. Bohm, B. J. Hiley, “Nonlocality and locality in the stochastic interpretation of quantum mechanics”, Phys. Rep., 172:3 (1989), 93–122 | DOI | MR

[6] D. Deutsch, “Quantum theory as a universal physical theory”, Int. J. Theoret. Phys., 24:1 (1985), 1–41 | DOI | MR

[7] J. Zinn Justin, Path Integrals in Quantum Mechanics, Oxford University Press, Oxford, 2004, 320+xiv pp. ; Zh. Zinn-Zhyusten, Kontinualnyi integral v kvantovoi mekhanike, Fizmatlit, M., 2006, 360 pp. | MR

[8] R. P. Feynman, “Space-time approach to non-relativistic quantum mechanics”, Rev. Modern Physics, 20 (1948), 367–387 | DOI | MR | Zbl

[9] R. P. Feynman, A. R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965, 371+xii pp. ; R. Feinman, A. Khibs, Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968, 382 pp. | MR | Zbl

[10] A. Yu. Samarin, “Natural space of the micro-object”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 3(24), 117–128 | DOI

[11] R. P. Feynman, The Development of the Space-Time View of Quantum Electrodynamics, Nobel Lecture, December 11, 1965. Preprint les Prix Nobel en 1965, The Nobel Foundation, Stockholm, 1966; R. Feinman, “Razvitie prostranstvenno-vremennoi traktovki kvantovoi elektrodinamiki”, UFN, 91:1 (1967), 29–48

[12] H. Everett, III, ““Relative state” formulation of quantum mechanics”, Rev. Mod. Phys., 29:3 (1957), 454–462 | DOI | MR

[13] W. H. Zurek, “Environment-induced superselection rules”, Phys. Rev. D., 26:8 (1982), 1862–1880 | DOI | MR

[14] M. B. Menskii, “Quantum measurements, the phenomenon of life, and time arrow: three great problems of physics (in Ginzburg's terminology) and their interrelation”, Phys. Usp., 50:4 (2007), 397–407 | DOI | DOI | MR

[15] A. Yu. Samarin, “The mechanism of the appearance of stochasticity in quantum mechanics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 4(29), 188–198 | DOI