Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 379-386.

Voir la notice de l'article provenant de la source Math-Net.Ru

The article gives an algorithm for constructing quantum integrals of motion on the basis of well-known classic integrals. To construct quantum integrals, we apply star product of the operators' symbols, which is used in the quantization theory. A non-trivial example of the Klein–Fock equation is considered on the four-dimensional Lie group.
Keywords: star product, Lie groups
Mots-clés : Lie algebras, quantization.
@article{VSGTU_2013_1_a38,
     author = {A. S. Popov and I. V. Shirokov},
     title = {Star product on the {Lie} coalgebra and its application for calculation of quantum integrals of motion},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {379--386},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a38/}
}
TY  - JOUR
AU  - A. S. Popov
AU  - I. V. Shirokov
TI  - Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 379
EP  - 386
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a38/
LA  - ru
ID  - VSGTU_2013_1_a38
ER  - 
%0 Journal Article
%A A. S. Popov
%A I. V. Shirokov
%T Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 379-386
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a38/
%G ru
%F VSGTU_2013_1_a38
A. S. Popov; I. V. Shirokov. Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 379-386. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a38/

[1] F. A. Berezin, “Some remarks about the associated envelope of a Lie algebra”, Funct. Anal. Appl., 1:2 (1967), 91–102 | DOI | MR | Zbl

[2] V. V. Trofimov, A. T. Fomenko, Algebra and Geometry of Integrable Hamiltonian Differential Equations, Factorial, Moscow, 1995, 448 pp. | MR | Zbl

[3] A. V. Shapovalov, I. V. Shirokov, “Noncommutative integration of linear differential equations”, Theoret. and Math. Phys., 104:2 (1995), 921–934 | DOI | MR | Zbl

[4] S. P. Baranovskii, V. V. Mikheyev, I. V. Shirokov, “Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top”, Theoret. and Math. Phys., 129:1 (2001), 1311–1319 | DOI | DOI | MR | Zbl