Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a38, author = {A. S. Popov and I. V. Shirokov}, title = {Star product on the {Lie} coalgebra and its application for calculation of quantum integrals of motion}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {379--386}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a38/} }
TY - JOUR AU - A. S. Popov AU - I. V. Shirokov TI - Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 379 EP - 386 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a38/ LA - ru ID - VSGTU_2013_1_a38 ER -
%0 Journal Article %A A. S. Popov %A I. V. Shirokov %T Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 379-386 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a38/ %G ru %F VSGTU_2013_1_a38
A. S. Popov; I. V. Shirokov. Star product on the Lie coalgebra and its application for calculation of quantum integrals of motion. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 379-386. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a38/
[1] F. A. Berezin, “Some remarks about the associated envelope of a Lie algebra”, Funct. Anal. Appl., 1:2 (1967), 91–102 | DOI | MR | Zbl
[2] V. V. Trofimov, A. T. Fomenko, Algebra and Geometry of Integrable Hamiltonian Differential Equations, Factorial, Moscow, 1995, 448 pp. | MR | Zbl
[3] A. V. Shapovalov, I. V. Shirokov, “Noncommutative integration of linear differential equations”, Theoret. and Math. Phys., 104:2 (1995), 921–934 | DOI | MR | Zbl
[4] S. P. Baranovskii, V. V. Mikheyev, I. V. Shirokov, “Quantum Hamiltonian Systems on K-Orbits: Semiclassical Spectrum of the Asymmetric Top”, Theoret. and Math. Phys., 129:1 (2001), 1311–1319 | DOI | DOI | MR | Zbl