Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a37, author = {V. V. Mikheyev}, title = {High temperature heat kernel expansion and~its~applications}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {369--378}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a37/} }
TY - JOUR AU - V. V. Mikheyev TI - High temperature heat kernel expansion and~its~applications JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 369 EP - 378 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a37/ LA - ru ID - VSGTU_2013_1_a37 ER -
%0 Journal Article %A V. V. Mikheyev %T High temperature heat kernel expansion and~its~applications %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 369-378 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a37/ %G ru %F VSGTU_2013_1_a37
V. V. Mikheyev. High temperature heat kernel expansion and~its~applications. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 369-378. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a37/
[1] N. E. Hurt, Geometric quantization in action, Mathematics and Its Applications (East European Series), 8, D. Reidel Publishing Co., Dordrecht-Boston, Mass., 1983, xiv+336 pp. ; N. Khart, Geometricheskoe kvantovanie v deistvii, Mir, M., 1985, 343 pp. | MR | Zbl | MR
[2] V. N. Shapovalov, “Symmetry and separation of variables in a linear differential equation of second order. I”, Sov. Phys. J., 21:5 (1978), 645–650 | DOI | MR
[3] V. N. Shapovalov, “Symmetry and separation of variables in second-order differential equations. II”, Sov. Phys. J., 21:6 (1978), 693–695 | DOI | MR
[4] V. N. Shapovalov, “Separation of variables in a second-order linear differential equation”, Differ. Equ, 16:10 (1981), 1212–1220 | MR | Zbl | Zbl
[5] D. V. Vassilevich, “Heat kernel expansion: user's manual”, Phys. Rep., 338:5–6 (2003), 279–360 | DOI | MR
[6] A. V. Shapovalov, I. V. Shirokov, “Noncommutative integration of linear differential equations”, Theoret. and Math. Phys., 104:2 (1995), 921–934 | DOI | MR | Zbl
[7] I. V. Shirokov, “Darboux coordinates on $K$-orbits and the spectra of Casimir operators on Lie groups”, Theoret. and Math. Phys., 123:3 (2000), 754–767 | DOI | DOI | MR | Zbl
[8] A. A. Kirillov, Elements of the theory of representations, Grundlehren der Mathematischen Wissenschaften, 220, Springer Verlag, Berlin, New York, Heidelberg, 1976, xi+315 pp. | DOI | MR | MR | Zbl | Zbl
[9] A. O. Barut, R. Razcka, Theory of group representations and applications. 2nd rev. ed., World Scientific, Singapore, 1986, xix+717 pp. | MR | Zbl
[10] S. P. Baranovsky, V. V. Mikheyev, I. V. Shirokov, “Quantum Hamiltonian systems on K-orbits: Semiclassical spectrum of the asymmetric top”, Theoret. and Math. Phys., 129:1 (2001), 1311–1319 | DOI | DOI | MR | MR | Zbl
[11] V. Mikheyev., I. Shirokov, “Building of heat kernel on non-compact homogeneous spaces”, EJTP, Electron. J. Theor. Phys., 3:13 (2006), 99–108 | Zbl
[12] V. V. Mikheyev., I. V. Shirokov, “Method of orbits of coadjoint representation in thermodynamics of noncompact Lie groups”, Russ. Phys. J., 50:3 (2007), 290–295 | DOI | MR | Zbl
[13] V. V. Mikheyev, I. V. Shirokov, “Application of coadjoint orbits in the thermodynamics of non-compact manifolds”, EJTP, Electron. J. Theor. Phys., 2:7 (2005), 1–10 | Zbl
[14] L. D. Landau; E. M. Lifshits, Theoretical physics. In 10 vols, v. 5, Statistical physics. Part 1, Nauka, Moscow, 1995, 606 pp. | Zbl
[15] A. A. Grib, S. G. Mamayev, V. M. Mostepanenko, Vacuum quantum effects in strong fields, Friedmann Lab. Publ., St. Petrsburg, 1994, 361 pp.
[16] N. D. Birrell, P. C. W. Davies, Quantum Fields in Curved Space. Corrected reprint of the 1982 original, Cambridge University Press, Cambridge, 1984, ix+340 pp. | MR | Zbl
[17] O. A. Chalykh, A. P. Veselov, “Integrability and Huygens' principle on symmetric spaces”, Comm. Math. Phys., 178:2 (1996), 311–338 | DOI | MR | Zbl