Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a35, author = {V. M. Zhuravlev and P. P. Mironov}, title = {The random-disturbed dynamic models and the maximum entropy method}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {352--360}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/} }
TY - JOUR AU - V. M. Zhuravlev AU - P. P. Mironov TI - The random-disturbed dynamic models and the maximum entropy method JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 352 EP - 360 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/ LA - ru ID - VSGTU_2013_1_a35 ER -
%0 Journal Article %A V. M. Zhuravlev %A P. P. Mironov %T The random-disturbed dynamic models and the maximum entropy method %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 352-360 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/ %G ru %F VSGTU_2013_1_a35
V. M. Zhuravlev; P. P. Mironov. The random-disturbed dynamic models and the maximum entropy method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 352-360. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/
[1] G. Yu. Reznichenko, Lectures on Mathematical Models in Biology. Part 1, RCD, Moscow, Izhevsk, 2002, 231 pp.
[2] V. M. Zhuravlev, P. P. Mironov, “The dynamics of random-disturbed Volterra–Lotke system and the maximum entropy method”, Nelineyniy mir, 9:4 (2011), 201–212
[3] V. I. Arnold, Hard and soft mathematical model, MTsNMO, Moscow, 2000, 32 pp.
[4] V. M. Zhuravlev, V. A. Shlaypin, “Principle of second maximum entropy and Reynolds equations in stohastic dynamics of one dimension nonlinear systems”, Nelineyniy mir, 6:7 (2008), 352–363
[5] V. M. Zhuravlev, “Turbulence of incompressible liquid flow near local equilibrium and the principle of secondary maximum of entropy”, Tech. Phys., 54:1 (2009), 13–24 | DOI
[6] Yu. L. Klimontovich, Introduction to Physics of Open Systems, Yanus-K, Moscow, 2002, 284 pp.
[7] A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics, v. 1, Mechanics of Turbulence, M.I.T. Press, Cambridge, Mass., 1971 totalpages xii+770 | Zbl
[8] B. R. Friden, “Estimates, entropy, plausibility”, Tr. Inst. Inzh. Electron. Radioelectron., 73:12 (1985), 78–86
[9] R. L. Stratanovich, Teoriya informatsii, Sov. radio, M., 1975, 424 pp.
[10] A. D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific series on nonlinear science, 11, World Scientific, Singapore, River Edge, NJ, 1998, xxi+193 pp. | MR