The random-disturbed dynamic models and the maximum entropy method
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 352-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work the behavior of random-disturbed equations is analysed on the basis of the Reynolds method and the maximum entropy principle. The stability of models is analysed. The general features of dynamics of Verhulst model, Volterra–Lotke model and Euler's equations of solid body rotation are revealed.
Keywords: random-disturbed dynamics equations, Reynolds method, maximum entropy method.
@article{VSGTU_2013_1_a35,
     author = {V. M. Zhuravlev and P. P. Mironov},
     title = {The random-disturbed dynamic models and the maximum entropy method},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {352--360},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/}
}
TY  - JOUR
AU  - V. M. Zhuravlev
AU  - P. P. Mironov
TI  - The random-disturbed dynamic models and the maximum entropy method
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 352
EP  - 360
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/
LA  - ru
ID  - VSGTU_2013_1_a35
ER  - 
%0 Journal Article
%A V. M. Zhuravlev
%A P. P. Mironov
%T The random-disturbed dynamic models and the maximum entropy method
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 352-360
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/
%G ru
%F VSGTU_2013_1_a35
V. M. Zhuravlev; P. P. Mironov. The random-disturbed dynamic models and the maximum entropy method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 352-360. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/

[1] G. Yu. Reznichenko, Lectures on Mathematical Models in Biology. Part 1, RCD, Moscow, Izhevsk, 2002, 231 pp.

[2] V. M. Zhuravlev, P. P. Mironov, “The dynamics of random-disturbed Volterra–Lotke system and the maximum entropy method”, Nelineyniy mir, 9:4 (2011), 201–212

[3] V. I. Arnold, Hard and soft mathematical model, MTsNMO, Moscow, 2000, 32 pp.

[4] V. M. Zhuravlev, V. A. Shlaypin, “Principle of second maximum entropy and Reynolds equations in stohastic dynamics of one dimension nonlinear systems”, Nelineyniy mir, 6:7 (2008), 352–363

[5] V. M. Zhuravlev, “Turbulence of incompressible liquid flow near local equilibrium and the principle of secondary maximum of entropy”, Tech. Phys., 54:1 (2009), 13–24 | DOI

[6] Yu. L. Klimontovich, Introduction to Physics of Open Systems, Yanus-K, Moscow, 2002, 284 pp.

[7] A. S. Monin, A. M. Yaglom, Statistical Fluid Mechanics, v. 1, Mechanics of Turbulence, M.I.T. Press, Cambridge, Mass., 1971 totalpages xii+770 | Zbl

[8] B. R. Friden, “Estimates, entropy, plausibility”, Tr. Inst. Inzh. Electron. Radioelectron., 73:12 (1985), 78–86

[9] R. L. Stratanovich, Teoriya informatsii, Sov. radio, M., 1975, 424 pp.

[10] A. D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific series on nonlinear science, 11, World Scientific, Singapore, River Edge, NJ, 1998, xxi+193 pp. | MR