The random-disturbed dynamic models and the maximum entropy method
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 352-360

Voir la notice de l'article provenant de la source Math-Net.Ru

In the work the behavior of random-disturbed equations is analysed on the basis of the Reynolds method and the maximum entropy principle. The stability of models is analysed. The general features of dynamics of Verhulst model, Volterra–Lotke model and Euler's equations of solid body rotation are revealed.
Keywords: random-disturbed dynamics equations, Reynolds method, maximum entropy method.
@article{VSGTU_2013_1_a35,
     author = {V. M. Zhuravlev and P. P. Mironov},
     title = {The random-disturbed dynamic models and the maximum entropy method},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {352--360},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/}
}
TY  - JOUR
AU  - V. M. Zhuravlev
AU  - P. P. Mironov
TI  - The random-disturbed dynamic models and the maximum entropy method
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 352
EP  - 360
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/
LA  - ru
ID  - VSGTU_2013_1_a35
ER  - 
%0 Journal Article
%A V. M. Zhuravlev
%A P. P. Mironov
%T The random-disturbed dynamic models and the maximum entropy method
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 352-360
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/
%G ru
%F VSGTU_2013_1_a35
V. M. Zhuravlev; P. P. Mironov. The random-disturbed dynamic models and the maximum entropy method. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 352-360. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a35/