The ultrametrical dynamics for the closed fractal-cluster resource models
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 343-351.

Voir la notice de l'article provenant de la source Math-Net.Ru

The evolution scenario of the resource distribution in the fractal-cluster systems which are identified as organism on Burdakov's classification is suggested. In this model the resource distribution dynamics is determined by the ultrametric structure of the fractal-cluster space. Thus for each cluster there is the characteristic time of its transition to an equilibrium state defined by ultrametric size of the cluster. The general equation that describes that dynamics is presented. The numeric solution for that equation for the certain types of resource transformation between clusters is received. The problem of identification of parameters of model with reference to real systems is discussed.
Keywords: hierarchical structures, ultrametric, fractal-cluster models, mathematical modeling, socio-economic systems, resource allocation.
@article{VSGTU_2013_1_a34,
     author = {V. T. Volov and A. P. Zubarev},
     title = {The ultrametrical dynamics for the closed fractal-cluster resource models},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {343--351},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a34/}
}
TY  - JOUR
AU  - V. T. Volov
AU  - A. P. Zubarev
TI  - The ultrametrical dynamics for the closed fractal-cluster resource models
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 343
EP  - 351
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a34/
LA  - ru
ID  - VSGTU_2013_1_a34
ER  - 
%0 Journal Article
%A V. T. Volov
%A A. P. Zubarev
%T The ultrametrical dynamics for the closed fractal-cluster resource models
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 343-351
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a34/
%G ru
%F VSGTU_2013_1_a34
V. T. Volov; A. P. Zubarev. The ultrametrical dynamics for the closed fractal-cluster resource models. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 343-351. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a34/

[1] R. Rammal, G. Toulouse, M. A. Virasoro, “Ultrametricity for physicists”, Rev. Modern Phys., 58:3 (1986), 765–788 | DOI | MR

[2] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, “On $p$-adic mathematical physics”, p-Adic Numb. Ultr. Anal. Appl., 1:1 (2009), 1–17, arXiv: [math-ph] 0904.4205 | DOI | MR | Zbl

[3] V. Dotsenko, An Introduction to the Spin Glasses and Neural Networks, World Scientific Lecture Notes in Physics, 54, World Scientific, Singapure, 1994, 156 pp. | Zbl

[4] A. T. Ogielski, D. L. Stein, “Dynamics on Ultrametric Spaces”, Phys. Rev. Lett., 55:15 (1985), 1634–1637 | DOI | MR

[5] V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, “$p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A, Math. Gen., 35:2 (2002), 177–189, arXiv: [cond-mat.dis-nn] cond-mat/0106506 | DOI | MR | Zbl

[6] V. A. Avetisov, A. Kh. Bikulov, V. A. Osipov, “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A, Math. Gen., 36:15 (2003), 4239–4246, arXiv: [cond-mat.dis-nn] cond-mat/0210447 | DOI | MR | Zbl

[7] D. Sornette, A. Johansen, “A hierarchical model of financial crashes”, Phys. A, 261:3–4 (1998), 581–598 | DOI | MR

[8] R. N. Mantenga, H. E. Stanley, An introduction to econophysics. Correlations and complexity in finance, Cambridge Univ. Press, Cambridge, 2000, x+148 pp. | MR

[9] A. Kh. Bikulov, A. P. Zubarev, L. V. Kaidalova, “Hierarchical dynamical model of financial market near the crash point and $p$-adic mathematical analysis”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2006, no. 42, 135–140 | DOI

[10] W. H. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Studies in Advanced Mathematics, 4, Cambridge Univ. Press, Cambridge, 1984, viii+306 pp. | MR | Zbl

[11] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic analysis and mathematical physics, Series on Soviet and East European Mathematics, 1, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, xx+319 pp. | MR | MR | Zbl

[12] V. M. Shelkovich, A. Yu. Khrennikov, Modern $p$-adic analysis and mathematical physics: Theory and Applications, Fizmatlit, Noscow, 2012, 452 pp.

[13] M. V. Dolgopolov, A. P. Zubarev, “Some Aspects of $m$-Adic Analysis and Its Applications to $m$-Adic Stochastic Processes”, p-Adic Numb. Ultr. Anal. Appl., 1:3 (2011), 39–51, arXiv: [math-ph] 1012.1248 | DOI | MR | Zbl

[14] V. T. Volov, Economics, Fluctuations and Thermodynamics, Samara Research Center of RAS, Samara, 2001, 222 pp.

[15] V. T. Volov, “Fractal-Cluster Theory of Educational Institutions Management”, Kazan State Univ., Kazan, 2000, 387 pp.

[16] C. W. Gardiner, Handbook of stochastic methods. For physics, chemistry and the natural sciences. Second edition, Springer Series in Synergetics, 13, Springer Verlag, Berlin, 1985, xx+442 pp. | DOI | MR