Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a34, author = {V. T. Volov and A. P. Zubarev}, title = {The ultrametrical dynamics for the closed fractal-cluster resource models}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {343--351}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a34/} }
TY - JOUR AU - V. T. Volov AU - A. P. Zubarev TI - The ultrametrical dynamics for the closed fractal-cluster resource models JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 343 EP - 351 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a34/ LA - ru ID - VSGTU_2013_1_a34 ER -
%0 Journal Article %A V. T. Volov %A A. P. Zubarev %T The ultrametrical dynamics for the closed fractal-cluster resource models %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 343-351 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a34/ %G ru %F VSGTU_2013_1_a34
V. T. Volov; A. P. Zubarev. The ultrametrical dynamics for the closed fractal-cluster resource models. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 343-351. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a34/
[1] R. Rammal, G. Toulouse, M. A. Virasoro, “Ultrametricity for physicists”, Rev. Modern Phys., 58:3 (1986), 765–788 | DOI | MR
[2] B. Dragovich, A. Yu. Khrennikov, S. V. Kozyrev, I. V. Volovich, “On $p$-adic mathematical physics”, p-Adic Numb. Ultr. Anal. Appl., 1:1 (2009), 1–17, arXiv: [math-ph] 0904.4205 | DOI | MR | Zbl
[3] V. Dotsenko, An Introduction to the Spin Glasses and Neural Networks, World Scientific Lecture Notes in Physics, 54, World Scientific, Singapure, 1994, 156 pp. | Zbl
[4] A. T. Ogielski, D. L. Stein, “Dynamics on Ultrametric Spaces”, Phys. Rev. Lett., 55:15 (1985), 1634–1637 | DOI | MR
[5] V. A. Avetisov, A. H. Bikulov, S. V. Kozyrev, V. A. Osipov, “$p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A, Math. Gen., 35:2 (2002), 177–189, arXiv: [cond-mat.dis-nn] cond-mat/0106506 | DOI | MR | Zbl
[6] V. A. Avetisov, A. Kh. Bikulov, V. A. Osipov, “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A, Math. Gen., 36:15 (2003), 4239–4246, arXiv: [cond-mat.dis-nn] cond-mat/0210447 | DOI | MR | Zbl
[7] D. Sornette, A. Johansen, “A hierarchical model of financial crashes”, Phys. A, 261:3–4 (1998), 581–598 | DOI | MR
[8] R. N. Mantenga, H. E. Stanley, An introduction to econophysics. Correlations and complexity in finance, Cambridge Univ. Press, Cambridge, 2000, x+148 pp. | MR
[9] A. Kh. Bikulov, A. P. Zubarev, L. V. Kaidalova, “Hierarchical dynamical model of financial market near the crash point and $p$-adic mathematical analysis”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2006, no. 42, 135–140 | DOI
[10] W. H. Schikhof, Ultrametric calculus. An introduction to $p$-adic analysis, Cambridge Studies in Advanced Mathematics, 4, Cambridge Univ. Press, Cambridge, 1984, viii+306 pp. | MR | Zbl
[11] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic analysis and mathematical physics, Series on Soviet and East European Mathematics, 1, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, xx+319 pp. | MR | MR | Zbl
[12] V. M. Shelkovich, A. Yu. Khrennikov, Modern $p$-adic analysis and mathematical physics: Theory and Applications, Fizmatlit, Noscow, 2012, 452 pp.
[13] M. V. Dolgopolov, A. P. Zubarev, “Some Aspects of $m$-Adic Analysis and Its Applications to $m$-Adic Stochastic Processes”, p-Adic Numb. Ultr. Anal. Appl., 1:3 (2011), 39–51, arXiv: [math-ph] 1012.1248 | DOI | MR | Zbl
[14] V. T. Volov, Economics, Fluctuations and Thermodynamics, Samara Research Center of RAS, Samara, 2001, 222 pp.
[15] V. T. Volov, “Fractal-Cluster Theory of Educational Institutions Management”, Kazan State Univ., Kazan, 2000, 387 pp.
[16] C. W. Gardiner, Handbook of stochastic methods. For physics, chemistry and the natural sciences. Second edition, Springer Series in Synergetics, 13, Springer Verlag, Berlin, 1985, xx+442 pp. | DOI | MR