Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a33, author = {D. B. Volov}, title = {Equation on the basis of one-dimensional chaotic dynamics}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {334--342}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/} }
TY - JOUR AU - D. B. Volov TI - Equation on the basis of one-dimensional chaotic dynamics JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 334 EP - 342 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/ LA - ru ID - VSGTU_2013_1_a33 ER -
D. B. Volov. Equation on the basis of one-dimensional chaotic dynamics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 334-342. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/
[1] D. B. Volov, “Generalized Verhulst–Ricker-Planck dynamic and its relation to the fine-structure constant”, Vestn. Transporta Povolzh'ya, 2011, no. 5(29), 82–90
[2] P.-F. Verhulst, “Notice sur la loi que la population poursuit dans son accroissement”, Corresp. Math. Phys., 10 (1838), 113–121
[3] W. E. Ricker, “Stock and recruitment”, J. Fish. Res. Bd. Canada, 11:5 (1954), 539–623 | DOI
[4] D. B. Volov, Specific behavior of one chaotic dynamics near the fine-structure constant, 2012, 9 pp., arXiv: [nlin.PS] 1205.6091
[5] A. P. Trunev, “Binding energy bifurcation and chaos in atomic nuclei”, Chaos and Correlation, 2012, 10 pp. () http://chaosandcorrelation.org/Chaos/CR_1_5_2012.pdf
[6] D. B. Volov, “The bitrial approach to the field theory”, Vestn. SamGUPS, 2012, no. 15, 144–153
[7] N. N. Bogolyubov, D. V. Shirkov, Introduction to the Theory of Quantized Fields, Nauka, Moscow, 1984, 597 pp. | MR