Equation on the basis of one-dimensional chaotic dynamics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 334-342.

Voir la notice de l'article provenant de la source Math-Net.Ru

Modified Klein–Gordon–Fock equations were obtained on the basis of one-dimensional chaotic dynamics and the original Lagrangians were found. The concepts of $m$-exponential map and groups with broken symmetry are introduced. A system of bitrial orthogonal functions is considered.
Keywords: one-dimensional chaotic dynamics, Lagrangian, exponential map, algebra, orthonormal systems.
Mots-clés : Klein–Gordon equation
@article{VSGTU_2013_1_a33,
     author = {D. B. Volov},
     title = {Equation on the basis of one-dimensional chaotic dynamics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {334--342},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/}
}
TY  - JOUR
AU  - D. B. Volov
TI  - Equation on the basis of one-dimensional chaotic dynamics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 334
EP  - 342
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/
LA  - ru
ID  - VSGTU_2013_1_a33
ER  - 
%0 Journal Article
%A D. B. Volov
%T Equation on the basis of one-dimensional chaotic dynamics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 334-342
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/
%G ru
%F VSGTU_2013_1_a33
D. B. Volov. Equation on the basis of one-dimensional chaotic dynamics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 334-342. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/

[1] D. B. Volov, “Generalized Verhulst–Ricker-Planck dynamic and its relation to the fine-structure constant”, Vestn. Transporta Povolzh'ya, 2011, no. 5(29), 82–90

[2] P.-F. Verhulst, “Notice sur la loi que la population poursuit dans son accroissement”, Corresp. Math. Phys., 10 (1838), 113–121

[3] W. E. Ricker, “Stock and recruitment”, J. Fish. Res. Bd. Canada, 11:5 (1954), 539–623 | DOI

[4] D. B. Volov, Specific behavior of one chaotic dynamics near the fine-structure constant, 2012, 9 pp., arXiv: [nlin.PS] 1205.6091

[5] A. P. Trunev, “Binding energy bifurcation and chaos in atomic nuclei”, Chaos and Correlation, 2012, 10 pp. () http://chaosandcorrelation.org/Chaos/CR_1_5_2012.pdf

[6] D. B. Volov, “The bitrial approach to the field theory”, Vestn. SamGUPS, 2012, no. 15, 144–153

[7] N. N. Bogolyubov, D. V. Shirkov, Introduction to the Theory of Quantized Fields, Nauka, Moscow, 1984, 597 pp. | MR