Equation on the basis of one-dimensional chaotic dynamics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 334-342

Voir la notice de l'article provenant de la source Math-Net.Ru

Modified Klein–Gordon–Fock equations were obtained on the basis of one-dimensional chaotic dynamics and the original Lagrangians were found. The concepts of $m$-exponential map and groups with broken symmetry are introduced. A system of bitrial orthogonal functions is considered.
Keywords: one-dimensional chaotic dynamics, Lagrangian, exponential map, algebra, orthonormal systems.
Mots-clés : Klein–Gordon equation
@article{VSGTU_2013_1_a33,
     author = {D. B. Volov},
     title = {Equation on the basis of one-dimensional chaotic dynamics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {334--342},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/}
}
TY  - JOUR
AU  - D. B. Volov
TI  - Equation on the basis of one-dimensional chaotic dynamics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 334
EP  - 342
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/
LA  - ru
ID  - VSGTU_2013_1_a33
ER  - 
%0 Journal Article
%A D. B. Volov
%T Equation on the basis of one-dimensional chaotic dynamics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 334-342
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/
%G ru
%F VSGTU_2013_1_a33
D. B. Volov. Equation on the basis of one-dimensional chaotic dynamics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 334-342. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a33/