Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a32, author = {E. V. Antropova and A. A. Bryzgalov and F. I. Karmanov}, title = {The energy levels and eigen wave functions of electrons in quantum rings in the magnetic field}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {326--333}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a32/} }
TY - JOUR AU - E. V. Antropova AU - A. A. Bryzgalov AU - F. I. Karmanov TI - The energy levels and eigen wave functions of electrons in quantum rings in the magnetic field JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 326 EP - 333 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a32/ LA - ru ID - VSGTU_2013_1_a32 ER -
%0 Journal Article %A E. V. Antropova %A A. A. Bryzgalov %A F. I. Karmanov %T The energy levels and eigen wave functions of electrons in quantum rings in the magnetic field %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 326-333 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a32/ %G ru %F VSGTU_2013_1_a32
E. V. Antropova; A. A. Bryzgalov; F. I. Karmanov. The energy levels and eigen wave functions of electrons in quantum rings in the magnetic field. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 326-333. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a32/
[1] A. G. Ushveridze Quasi-exactly solvable models in quantum mechanics, Soviet J. Particles and Nuclei, 20:5 (1989), 504–528 | MR
[2] W.-C. Tan, J. C. Inkson, “Electron states in a two-dimensional ring — an exactly soluble model”, Semicond. Sci. Technol., 11:11 (1996), 1635–1641 | DOI
[3] H. A. Mavromatis, “Generalization of Casas–Plastino potentials to three dimensions”, Amer. J. Phys., 68:3 (2000), 287–288 | DOI | MR
[4] A. A. Bryzgalov, F. I. Karmanov, “Method for splitting into physical processes in the problem on the time dynamics of electron wave functions of a two-dimensional quantum ring”, Math. Models Comput. Simul., 3:1 (2011), 25–34 | DOI | Zbl
[5] S. Yu. Slavyanov, W. Lay, Special functions. A unified theory based on singularities., Oxford University Press, New York, 2000, xvi+293 pp. ; S. Yu. Slavyanov, V. Lai, Spetsialnye funktsii: Edinaya teoriya, osnovannaya na analize, Nevskii Dialekt, SPb., 2002, 312 pp. | MR | Zbl
[6] E. R. Arriola, J. S. Dehesa, A. Zarzo, “Spectral properties of the biconfluent Heun differential equation”, J. Comput. Appl. Math., 37:1–3 (1991), 161–169 | DOI | MR | Zbl
[7] A. F. Nikiforov, V. B. Uvarov, Special functions of mathematical physics, Nauka, Moscow, 1984, 344 pp. | MR