Ultrametricity as a basis for organization of protein molecules: CO binding to myoglobin
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 315-325.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the basic notions of ultrametric ($p$-adic) description of protein conformational dynamics and CO rebinding to myoglobin are presented. It is shown that one and the same model of the reaction — ultrametric diffusion type describes essentially different features of the rebinding kinetics at high-temperatures ($300{\div}200$ K) and low-temperatures ($180{\div}60$ K). We suggest this result indicates a special structural order in a protein molecule. Besides all the other structural features, it is organized by such a way that its conformational mobility changes self-similar from room temperature up to the cryogenic temperatures.
Keywords: CO rebinding to myoglobin, protein dynamics, enzyme kinetics, mathematical modeling, ultrametric random walk, $p$-adic numbers.
@article{VSGTU_2013_1_a31,
     author = {V. A. Avetisov and A. Kh. Bikulov and A. P. Zubarev},
     title = {Ultrametricity as a basis for organization of protein molecules: {CO} binding to myoglobin},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {315--325},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a31/}
}
TY  - JOUR
AU  - V. A. Avetisov
AU  - A. Kh. Bikulov
AU  - A. P. Zubarev
TI  - Ultrametricity as a basis for organization of protein molecules: CO binding to myoglobin
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 315
EP  - 325
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a31/
LA  - ru
ID  - VSGTU_2013_1_a31
ER  - 
%0 Journal Article
%A V. A. Avetisov
%A A. Kh. Bikulov
%A A. P. Zubarev
%T Ultrametricity as a basis for organization of protein molecules: CO binding to myoglobin
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 315-325
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a31/
%G ru
%F VSGTU_2013_1_a31
V. A. Avetisov; A. Kh. Bikulov; A. P. Zubarev. Ultrametricity as a basis for organization of protein molecules: CO binding to myoglobin. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 315-325. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a31/

[1] A. Ansary, J. Berendzen, S. F. Bowne, G. Frauenfelder, I. E. T. Iben, T. B. Sauke, E. Shyamsunder, R. D. Young, “Protein states and proteinquakes”, Proc. Natl. Acad. Sci. USA, 82:15 (1985), 5000–5004 | DOI

[2] P. J. Steinbach, A. Ansary, J. Berendzen, D. Braunstein, K. Chu, B. R. Cowen, D. Ehrenstein, G. Frauenfelder, J. B. Johnson, D. C. Lamb, S. Luck, J. R. Mourant, G. U. Nienhaus, P. Ormos, R. Philipp, A. Xie, R. D. Young, “Ligand binding to heme proteins: connection between dynamics and function”, Biochemistry, 30:16 (1991), 3988–4001 | DOI

[3] A. A. Zharikov, S. F. Fischer, “Scaling law for the non-exponential ligand rebinding of CO in myoglobin”, Chem. Phys. Lett., 263:6 (1996), 749–758 | DOI

[4] A. A. Zharikov, S. F. Fischer, “Nonexponential ligand rebinding of $\rm CO$ and $\rm O_2$ in myoglobin controlled by fluctuations of the protein”, Chem. Phys. Lett., 249:5–6 (1996), 459–469 | DOI

[5] N. G. Van Kampen, Stochastic Processes in Physics and Chemistry, North Holland, Amsterdam, 1981 ; N. G. Van Kampen, Stokhasticheskie protsessy v fizike i khimii, Vyssh. shk., M., 1990, 376 pp. | MR | Zbl | Zbl

[6] G. Parisi, “Infinite number of order parameters for spin-glasses”, Phys. Rev. Lett., 43:23 (1979), 1754–1756 | DOI | MR

[7] A. T. Ogielski, D. L. Stein, “Dynamics on ultrametric spaces”, Phys. Rev. Lett., 55:15 (1985), 1634–1637 | DOI | MR

[8] V. A. Avetisov, A. Kh. Bikulov, S. V. Kozyrev, “Application of $p$-adic analysis to models of spontaneous breaking of the replica symmetry”, J. Phys. A, 32:50 (1999), 8785–8791, arXiv: [cond-mat.dis-nn] cond-mat/9904360 | DOI | MR | Zbl

[9] G. Parisi, N. Sourlas, “$p$-Adic numbers and replica symmetry breaking”, Eur. Phys. J. B Condens. Matter Phys., 14:3 (2000), 535–542, arXiv: [cond-mat.dis-nn] cond-mat/9906095 | MR

[10] V. S. Vladimirov, I. V. Volovich, E. I. Zelenov, $p$-Adic analysis and mathematical physics, Series on Soviet and East European Mathematics, 1, World Scientific Publishing Co., Inc., River Edge, NJ, 1994, xx+319 pp. | MR | MR | Zbl

[11] V. M. Shelkovich, A. Yu. Khrennikov, Modern $p$-adic analysis and mathematical physics: Theory and Applications, Fizmatlit, Moscow, 2012, 452 pp.

[12] M. V. Dolgopolov, A. P. Zubarev, “Some aspects of $m$-adic analysis and its applications to $m$-adic stochastic processes”, p-Adic Numbers Ultrametric Anal. Appl., 3:1 (2011), 39–51, arXiv: [math-ph] 1012.1248 | DOI | MR | Zbl

[13] V. A. Avetisov, A. Kh. Bikulov, S. V. Kozyrev, V. A. Osipov, “$p$-Adic models of ultrametric diffusion constrained by hierarchical energy landscapes”, J. Phys. A, 35:2 (2002), 177–189, arXiv: [cond-mat.dis-nn] cond-mat/0106506 | DOI | MR | Zbl

[14] V. A. Avetisov, A. Kh. Bikulov, V. A. Osipov, “$p$-Adic description of characteristic relaxation in complex systems”, J. Phys. A, 36:15 (2003), 4239–4246, arXiv: [cond-mat.dis-nn] cond-mat/0210447 | DOI | MR | Zbl

[15] V. Avetisov, A. Bikulov, “Protein ultrametricity and spectral diffusion in deeply frozen proteins”, Biophys. Rev. Lett., 5:3 (2008), 387–396 | DOI

[16] V. A. Avetisov, A. Kh. Bikulov, A. P. Zubarev, “First passage time distribution and the number of returns for ultrametric random walks”, J. Phys. A, 42:8 (2009), 085005, 18 pp., arXiv: [math-ph] 0808.3066 | DOI | MR