Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a30, author = {N. Watanabe}, title = {Note on complexity of quantum transmission processes}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {305--314}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {en}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a30/} }
TY - JOUR AU - N. Watanabe TI - Note on complexity of quantum transmission processes JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 305 EP - 314 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a30/ LA - en ID - VSGTU_2013_1_a30 ER -
N. Watanabe. Note on complexity of quantum transmission processes. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 305-314. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a30/
[1] M. Ohya, “Information dynamics and its application to optical communication processes”, Quantum Aspects of Optical Communications (Paris, 1990), Lecture Notes in Physics, 378, Springer, Berlin, 1991, 81–92 | DOI | MR
[2] M. Ohya, “On compound state and mutual information in quantum information theory”, Information Theory, IEEE Trans., 29:5 (1983), 770–774 | DOI | MR | Zbl
[3] M. Ohya, D. Petz, Quantum entropy and its use, Texts and Monographs in Physics, Berlin, Springer Verlag, 1993, viii+335 pp. | MR | Zbl
[4] M. Ohya, I. Volovich, Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Theoretical and Mathematical Physics, Springer, Dordrecht, 2011, xx+759 pp. | DOI | MR | Zbl
[5] R. S. Ingarden, A. Kossakowski, M. Ohya, Information dynamics and open systems. Classical and quantum approach, Fundamental Theories of Physics, 86, Kluwer Academic Publ., Dordrecht, 1997, x+307 pp. | MR | Zbl
[6] M. Ohya, N. Watanabe, “Construction and analysis of a mathematical model in quantum communication processes”, Electronics and Communications in Japan, Part 1, 68:2 (1985), 29–34 | DOI
[7] L. Accardi, M. Ohya, “Compound channels, transition expectations, and liftings”, Appl. Math. Optim., 39:1 (1999), 33–59 | DOI | MR | Zbl
[8] K.-H. Fichtner, W. Freudenberg, V. Liebscher, Beam splittings and time evolutions of Boson systems, Forschungsergebnise der Fakultät für Mathematik und Informatik, , 1996, 105 pp. Math/Inf/96/39
[9] J. von Neumann, Die Mathematischen Grundlagen der Quantenmechanik (German), Springer Verlag, Berlin, 1932, v+262 pp. | MR
[10] M. Ohya, “Some aspects of quantum information theory and their applications to irreversible processes”, Rep. Math. Phys., 27:1 (1989), 19–47 | DOI | MR | Zbl
[11] K. Urbanik, “Joint probability distribution of observables in quantum mechanics”, Studia Math., 21:1 (1961), 117–133 | MR | Zbl
[12] R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, 27, Springer Verlag, Berlin, New York, 1970, vii+81 pp. | MR | Zbl
[13] H. Umegaki, “Conditional expectation in an operator algebra. IV. Entropy and information”, Kōdai Math. Sem. Rep., 14 (1962), 59–85 | DOI | MR | Zbl
[14] H. Araki, “Relative entropy for states of von Neumann algebras”, Publ. Res. Inst. Math. Sci., 11:3 (1976), 809–833 | DOI | MR | Zbl
[15] B. W. Schumacher, M. A. Nielsen, “Quantum data processing and error correction”, Phys. Rev. A, 54:4 (1996), 2629–2635, arXiv: quant-ph/9604022 | DOI | MR
[16] A. Uhlmann, “Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in interpolation theory”, Commun. Math. Phys., 54:1 (1977), 21–32 | DOI | MR | Zbl
[17] M. Ohya, D. Petz, N. Watanabe, “On capacity of quantum channels”, Probab. Math. Statist., 17:1, Acta Univ. Wratislav. No. 1928 (1997), 179–196 | MR | Zbl
[18] M. Ohya, D. Petz, N. Watanabe, “Numerical computation of quantum capacity”, Proc. of the International Quantum Structures Association (Berlin, 1996), Internat. J. Theoret. Phys., 37:1 (1998), 507–510 | DOI | MR | Zbl
[19] M. Ohya, N. Watanabe, “Quantum capacity of noisy quantum channel”, Quantum Communication and Measurement, 3 (1997), 213–220 | DOI
[20] M. Ohya, N. Watanabe, Foundation of Quantum Communication Theory (in Japanese), Makino Pub. Co., 1998
[21] P. Shor, , Lecture Notes, MSRI Workshop on Quantum Computation, 2002 The quantum channel capacity and coherent information
[22] H. Barnum, M. A. Nielsen, B. W. Schumacher, “Information transmission through a noisy quantum channel”, Phys. Rev. A, 57:6 (1998), 4153–4175, arXiv: quant-ph/9702049 | DOI
[23] C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyalz, “Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem”, Inform. Theory, IEEE Trans., 48:10 (2001), 2637–2655, arXiv: quant-ph/0106052 | DOI | MR
[24] B. W. Schumacher, “Sending entanglement through noisy quantum channels”, Phys. Rev. A, 54:4 (1996), 2614–2628 | DOI | MR
[25] M. Ohya, N. Watanabe, Comparison of mutual entropy-type measures, TUS preprint | MR