Note on complexity of quantum transmission processes
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 305-314.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 1989, Ohya propose a new concept, so-called Information Dynamics (ID), to investigate complex systems according to two kinds of view points. One is the dynamics of state change and another is measure of complexity. In ID, two complexities $ C^{S} $ and $ T^{S} $ are introduced. $ C^{S} $ is a measure for complexity of system itself, and $ T^{S} $ is a measure for dynamical change of states, which is called a transmitted complexity. An example of these complexities of ID is entropy for information transmission processes. The study of complexity is strongly related to the study of entropy theory for classical and quantum systems. The quantum entropy was introduced by von Neumann around 1932, which describes the amount of information of the quantum state itself. It was extended by Ohya for C*-systems before CNT entropy. The quantum relative entropy was first defined by Umegaki for $ \sigma $-finite von Neumann algebras, which was extended by Araki and Uhlmann for general von Neumann algebras and *-algebras, respectively. By introducing a new notion, the so-called compound state, in 1983 Ohya succeeded to formulate the mutual entropy in a complete quantum mechanical system (i.e., input state, output state and channel are all quantum mechanical) describing the amount of information correctly transmitted through the quantum channel. In this paper, we briefly review the entropic complexities for classical and quantum systems. We introduce some complexities by means of entropy functionals in order to treat the transmission processes consistently. We apply the general frames of quantum communication to the Gaussian communication processes. Finally, we discuss about a construction of compound states including quantum correlations.
Keywords: quantum communication channel, von Neumann entropy, $\mathcal{S}$-mixing entropy, Ohya mutual entropy, C*-system.
@article{VSGTU_2013_1_a30,
     author = {N. Watanabe},
     title = {Note on complexity of quantum transmission processes},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {305--314},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a30/}
}
TY  - JOUR
AU  - N. Watanabe
TI  - Note on complexity of quantum transmission processes
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 305
EP  - 314
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a30/
LA  - en
ID  - VSGTU_2013_1_a30
ER  - 
%0 Journal Article
%A N. Watanabe
%T Note on complexity of quantum transmission processes
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 305-314
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a30/
%G en
%F VSGTU_2013_1_a30
N. Watanabe. Note on complexity of quantum transmission processes. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 305-314. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a30/

[1] M. Ohya, “Information dynamics and its application to optical communication processes”, Quantum Aspects of Optical Communications (Paris, 1990), Lecture Notes in Physics, 378, Springer, Berlin, 1991, 81–92 | DOI | MR

[2] M. Ohya, “On compound state and mutual information in quantum information theory”, Information Theory, IEEE Trans., 29:5 (1983), 770–774 | DOI | MR | Zbl

[3] M. Ohya, D. Petz, Quantum entropy and its use, Texts and Monographs in Physics, Berlin, Springer Verlag, 1993, viii+335 pp. | MR | Zbl

[4] M. Ohya, I. Volovich, Mathematical foundations of quantum information and computation and its applications to nano- and bio-systems, Theoretical and Mathematical Physics, Springer, Dordrecht, 2011, xx+759 pp. | DOI | MR | Zbl

[5] R. S. Ingarden, A. Kossakowski, M. Ohya, Information dynamics and open systems. Classical and quantum approach, Fundamental Theories of Physics, 86, Kluwer Academic Publ., Dordrecht, 1997, x+307 pp. | MR | Zbl

[6] M. Ohya, N. Watanabe, “Construction and analysis of a mathematical model in quantum communication processes”, Electronics and Communications in Japan, Part 1, 68:2 (1985), 29–34 | DOI

[7] L. Accardi, M. Ohya, “Compound channels, transition expectations, and liftings”, Appl. Math. Optim., 39:1 (1999), 33–59 | DOI | MR | Zbl

[8] K.-H. Fichtner, W. Freudenberg, V. Liebscher, Beam splittings and time evolutions of Boson systems, Forschungsergebnise der Fakultät für Mathematik und Informatik, , 1996, 105 pp. Math/Inf/96/39

[9] J. von Neumann, Die Mathematischen Grundlagen der Quantenmechanik (German), Springer Verlag, Berlin, 1932, v+262 pp. | MR

[10] M. Ohya, “Some aspects of quantum information theory and their applications to irreversible processes”, Rep. Math. Phys., 27:1 (1989), 19–47 | DOI | MR | Zbl

[11] K. Urbanik, “Joint probability distribution of observables in quantum mechanics”, Studia Math., 21:1 (1961), 117–133 | MR | Zbl

[12] R. Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, 27, Springer Verlag, Berlin, New York, 1970, vii+81 pp. | MR | Zbl

[13] H. Umegaki, “Conditional expectation in an operator algebra. IV. Entropy and information”, Kōdai Math. Sem. Rep., 14 (1962), 59–85 | DOI | MR | Zbl

[14] H. Araki, “Relative entropy for states of von Neumann algebras”, Publ. Res. Inst. Math. Sci., 11:3 (1976), 809–833 | DOI | MR | Zbl

[15] B. W. Schumacher, M. A. Nielsen, “Quantum data processing and error correction”, Phys. Rev. A, 54:4 (1996), 2629–2635, arXiv: quant-ph/9604022 | DOI | MR

[16] A. Uhlmann, “Relative entropy and the Wigner–Yanase–Dyson–Lieb concavity in interpolation theory”, Commun. Math. Phys., 54:1 (1977), 21–32 | DOI | MR | Zbl

[17] M. Ohya, D. Petz, N. Watanabe, “On capacity of quantum channels”, Probab. Math. Statist., 17:1, Acta Univ. Wratislav. No. 1928 (1997), 179–196 | MR | Zbl

[18] M. Ohya, D. Petz, N. Watanabe, “Numerical computation of quantum capacity”, Proc. of the International Quantum Structures Association (Berlin, 1996), Internat. J. Theoret. Phys., 37:1 (1998), 507–510 | DOI | MR | Zbl

[19] M. Ohya, N. Watanabe, “Quantum capacity of noisy quantum channel”, Quantum Communication and Measurement, 3 (1997), 213–220 | DOI

[20] M. Ohya, N. Watanabe, Foundation of Quantum Communication Theory (in Japanese), Makino Pub. Co., 1998

[21] P. Shor, , Lecture Notes, MSRI Workshop on Quantum Computation, 2002 The quantum channel capacity and coherent information

[22] H. Barnum, M. A. Nielsen, B. W. Schumacher, “Information transmission through a noisy quantum channel”, Phys. Rev. A, 57:6 (1998), 4153–4175, arXiv: quant-ph/9702049 | DOI

[23] C. H. Bennett, P. W. Shor, J. A. Smolin, A. V. Thapliyalz, “Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem”, Inform. Theory, IEEE Trans., 48:10 (2001), 2637–2655, arXiv: quant-ph/0106052 | DOI | MR

[24] B. W. Schumacher, “Sending entanglement through noisy quantum channels”, Phys. Rev. A, 54:4 (1996), 2614–2628 | DOI | MR

[25] M. Ohya, N. Watanabe, Comparison of mutual entropy-type measures, TUS preprint | MR