The characteristic problem for the system of the general hyperbolic differential equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 31-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the well-posed characteristic problem for the system of the general hyperbolic differential equations of the third order with nonmultiple characteristics. The solution of this problem is constructed in an explicit form. The example of the analogue of Goursat problem for a particular system of the hyperbolic differential equations of the third order is given.
Keywords: system of the general hyperbolic differential equations, nonmultiple characteristics, characteristic problem, Hadamard's well-posedness.
@article{VSGTU_2013_1_a3,
     author = {A. A. Andreev and J. O. Yakovleva},
     title = {The characteristic problem for the system of the general hyperbolic differential equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {31--36},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a3/}
}
TY  - JOUR
AU  - A. A. Andreev
AU  - J. O. Yakovleva
TI  - The characteristic problem for the system of the general hyperbolic differential equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 31
EP  - 36
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a3/
LA  - ru
ID  - VSGTU_2013_1_a3
ER  - 
%0 Journal Article
%A A. A. Andreev
%A J. O. Yakovleva
%T The characteristic problem for the system of the general hyperbolic differential equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 31-36
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a3/
%G ru
%F VSGTU_2013_1_a3
A. A. Andreev; J. O. Yakovleva. The characteristic problem for the system of the general hyperbolic differential equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 31-36. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a3/

[1] A. V. Bitsadze, “On a question on the formulation of the characteristic problem for second-order hyperbolic systems”, Dokl. Akad. Nauk SSSR, 223:6 (1975), 1289–1292 | Zbl

[2] O. M. Dzhokhadze, “Influence of Lower Terms on the Well-Posedness of Characteristics Problems for Third-Order Hyperbolic Equations”, Math. Notes, 74:4 (2003), 491–501 | DOI | DOI | MR | Zbl

[3] A. P. Soldatov, M. Kh. Shkhanukov, “Boundary value problems with A. A. Samarskiy's general nonlocal condition for higher-order pseudoparabolic equations”, Soviet Math. Dokl., 36:3 (1988), 507–511 | Zbl

[4] S. S. Kharibegashvili, “Solvability of a characteristic problem for degenerate second-order hyperbolic systems”, Differ. Equations, 25:1 (1989), 123–131 | Zbl

[5] A. V. Bitsadze, Some classes of partial differential equations, Nauka, Moscow, 1981, 448 pp.

[6] J. O. Yakovleva, “One characteristic problem for the general hyperbolic differential equation of the third order with nonmultiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 3(28), 180–183 | DOI | Zbl