Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a26, author = {A. S. Trushechkin}, title = {On a rigorous definition of microscopic solutions of the {Boltzmann--Enskog} equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {270--278}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a26/} }
TY - JOUR AU - A. S. Trushechkin TI - On a rigorous definition of microscopic solutions of the Boltzmann--Enskog equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 270 EP - 278 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a26/ LA - ru ID - VSGTU_2013_1_a26 ER -
%0 Journal Article %A A. S. Trushechkin %T On a rigorous definition of microscopic solutions of the Boltzmann--Enskog equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 270-278 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a26/ %G ru %F VSGTU_2013_1_a26
A. S. Trushechkin. On a rigorous definition of microscopic solutions of the Boltzmann--Enskog equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 270-278. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a26/
[1] N. N. Bogolyubov, “Microscopic solutions of the Boltzmann–Enskog equation in kinetic theory for elastic balls”, Theoret. and Math. Phys., 24:2 (1975), 804–807 | DOI | MR
[2] N. N. Bogolubov, N. N. Bogolubov (Jr.), Introduction to Quantum Statistical Mechanics, 2nd, World Scientific, Singapore, 2009, 440 pp. | MR | Zbl
[3] A. S. Trushechkin, “Derivation of the particle dynamics from kinetic equations”, p-Adic Numb. Ultr. Anal. Appl., 4:2 (2012), 130–142 | DOI | MR | Zbl
[4] A. A. Vlasov, Theory of many particles, Gostekhizdat, Moscow, 1950, 348 pp.
[5] Arkeryd L., Cercignani C., “Global existence in $L_1$ for the Enskog equation and convergence of the solutions to solutions of the Boltzmann equation”, J. Stat. Phys., 59:3–4 (1990), 845–867 | DOI | MR | Zbl
[6] D. Ya. Petrina, V. I. Gerasimenko, P. V. Malyshev, Mathematical foundations of classical statistical mechanics, Naukova Dumka, Kiev, 1985, 263 pp. | MR | Zbl
[7] C. Cercignani, Theory and application of the Boltzmann equation, Elsevier, New York, 1975, xii+415 pp. ; K. Cherchinyani, Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978, 495 pp. | MR | MR
[8] I. V. Volovich, “Time Irreversibility Problem and Functional Formulation of Classical Mechanics”, Vestnik SamGU. Estestvennonauchn. Ser., 2008, no. 8/1(67), 35–55 | MR
[9] I. V. Volovich, “Randomness in classical and quantum mechanics”, Found. Phys., 41:3 (2011), 516–528 | DOI | MR | Zbl
[10] A. I. Mikhaylov, “Functional mechanics: Evolution of the moments of distribution function and the Poincaré recurrence theorem”, p-Adic Numb. Ultr. Anal. Appl., 3:3 (2011), 205–211 | DOI | DOI | MR | Zbl
[11] E. V. Piscovskiy, I. V. Volovich,, “On the Correspondence Between Newtonian and Functional Mechanics”, Quantum Bio-Informatic IV, Quantum Probability and White Noise Analisis, 28, eds. L. Accardy, W. Freudenberg, M. Ohya, World Sci, Singapure, 2011, 363–372 | DOI | MR
[12] E. V. Piskovskiy, “On classical and functional approachs to mechanics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 1(22), 134–139 | DOI
[13] A. S. Trushechkin, I. V. Volovich, “Functional classical mechanics and rational numbers”, p-Adic Numb. Ultr. Anal. Appl., 1:4 (2009), 361–367 | DOI | MR | Zbl
[14] I. V. Volovich, “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135 | DOI | DOI | Zbl
[15] V. V. Vedenyapin, Boltzmann and Vlasov Kinetic equations, Fizmatlit, Moscow, 2001, 112 pp.
[16] V. V. Kozlov, Thermal equilibrium in the sense of Gibbs and Poincaré, Institut Komp'yuternykh Issledovanij, Moscow, Izhevsk, 2002, 320 pp. | MR | Zbl
[17] V. V. Kozlov, Gibbs Ensembles and Non-equilibrium Statistical Mechanics, Institut Komp'yuternykh Issledovanij, Moscow, Izhevsk, 2008, 208 pp. | Zbl