On a fine localization of the Mathieu azimuthal numbers by Cassini ovals
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 260-269.

Voir la notice de l'article provenant de la source Math-Net.Ru

The study is devoted to numerical and analytical problems concerning generating periodic and antiperiodic solutions of the angular (circumferential) Mathieu equation obtained for the circumferential harmonics of an elliptic cylinder. The Mathieu eigenvalues localization problem and computations of elliptic azimuthal numbers are discussed. First, the Sturm–Liouville eigenvalue problem for the angular Mathieu equation is reformulated as an algebraic eigenvalue problem for an infinite linear self-adjoint pentadiagonal matrix operator acting in the complex bi-infinite sequence space $l_2$. The matrix operator is then represented as a sum of a diagonal matrix and an infinite symmetric doubly stochastic matrix, which is interpreted as a finite perturbation imposed on the diagonal matrix. Effective algorithms for computations of the Mathieu eigenvalues and associated circumferential harmonics are discussed. Azimuthal numbers notion is extended to the case of elastic and thermoelastic waves propagating in a long elliptic waveguide. Estimations of upper and low bounds and thus localizations of the angular Mathieu eigenvalues and elliptic azimuthal numbers are given. Those are obtained by algebraic methods employing the Gerschgorin theorems and Cassini ovals technique. The latter provides more accurate solution of the Mathieu eigenvalues localization problem.
Mots-clés : Mathieu equation, Sturm–Liouville problem
Keywords: eigenvalue, azimuthal number, wavenumber, wave function, diagonalization, Gerschgorin circle, Cassini oval, doubly stochastic matrix.
@article{VSGTU_2013_1_a25,
     author = {Yu. N. Radayev and M. V. Taranova},
     title = {On a fine localization of the {Mathieu} azimuthal numbers by {Cassini} ovals},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {260--269},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a25/}
}
TY  - JOUR
AU  - Yu. N. Radayev
AU  - M. V. Taranova
TI  - On a fine localization of the Mathieu azimuthal numbers by Cassini ovals
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 260
EP  - 269
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a25/
LA  - ru
ID  - VSGTU_2013_1_a25
ER  - 
%0 Journal Article
%A Yu. N. Radayev
%A M. V. Taranova
%T On a fine localization of the Mathieu azimuthal numbers by Cassini ovals
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 260-269
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a25/
%G ru
%F VSGTU_2013_1_a25
Yu. N. Radayev; M. V. Taranova. On a fine localization of the Mathieu azimuthal numbers by Cassini ovals. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 260-269. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a25/

[1] É. Mathieu, “Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique”, J. Math. Pures Appl., 13 (1868), 137–203

[2] M. J. O. Strutt, Lame, Mathieu and Related Functions in Physics and Technology, Springer, Berlin, 1932; M. D. O. Strett, Funktsii Lame, Mate i rodstvennye im v fizike i tekhnike, Gos. nauchno-tekhnicheskoe izd-vo Ukrainy, Kharkov, Kiev, 1935, 240 pp.

[3] N. W. McLachlan, Theory and Application of Mathieu Functions, Oxford Press, London, 1951, xii+401 pp. ; N. V. Mak-Lakhlan, Teoriya i prilozheniya funktsii Mate, Inostr. lit-ra, M., 1953, 476 pp. | MR

[4] V. A. Kovalev, Yu. N. Radayev, “Wave problems of field theory and thermomechanics”, The 2nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich and Yu. N. Radayev, Kniga, Samara, 2010, 165–166

[5] V. A. Kovalev, Yu. N. Radayev, Wave problems of field theory and thermomechanics, Saratov Univ., Saratov, 2010, 328 pp.

[6] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965, xviii+662 pp. ; Dzh. Kh. Uilkinson, Algebraicheskaya problema sobstvennykh znachenii, Nauka, M., 1970, 564 pp. | MR | Zbl

[7] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge etc., 1985, xiii+561 pp. ; R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989, 656 pp. | MR | Zbl | MR