Effect of the influence of rheological beam longitudinal strains on the disc motion state
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 253-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper analyzes the effect that the material of a simple rheological beam has on the dynamics of a moving disc. The hybrid system of the differential equations describing the motion of the system disc–rheological beam consisting of the integro-differential equation of beam longitudinal vibrations and the Lagrange equations of the first kind, defining the motion of the disc, and the equations of nonholonomic constraints following from the difference between the Lagrange coordinates of the disc mass center and the beam point contacting with the disc is composed. The paper considers the mode of the disc steady motion, allowing to integrate the equation of beam vibrations regardless the system of equations describing the motion of the disc. It is identified that when the disc moves at a low speed, and in the mode corresponding to the limit value of the relaxation time it causes physically inadequate strain in the beam. When relaxation time is null there is a steady mode of forced beam vibrations at moderate amplitudes.
Keywords: nonholonomic connection, Dirac delta function
Mots-clés : relaxation kernel, Laplace transformation.
@article{VSGTU_2013_1_a24,
     author = {G. V. Pavlov and M. A. Kal'mova and E. S. Vronskaya},
     title = {Effect of the influence of rheological beam longitudinal strains on the disc motion state},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {253--259},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a24/}
}
TY  - JOUR
AU  - G. V. Pavlov
AU  - M. A. Kal'mova
AU  - E. S. Vronskaya
TI  - Effect of the influence of rheological beam longitudinal strains on the disc motion state
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 253
EP  - 259
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a24/
LA  - ru
ID  - VSGTU_2013_1_a24
ER  - 
%0 Journal Article
%A G. V. Pavlov
%A M. A. Kal'mova
%A E. S. Vronskaya
%T Effect of the influence of rheological beam longitudinal strains on the disc motion state
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 253-259
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a24/
%G ru
%F VSGTU_2013_1_a24
G. V. Pavlov; M. A. Kal'mova; E. S. Vronskaya. Effect of the influence of rheological beam longitudinal strains on the disc motion state. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 253-259. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a24/

[1] O. A. Goroshko, “Nonholonomic systems with bodies that are deformed”, Vestn. Kiyev. Un-ta, 1983, no. 25, 51-55

[2] O. A. Goroško, K. Hedrih (Stevanović), Analitička dinamika (mehanika) diskretnih naslednih sistema (in Serbian), University of Niš, Niš, 2001, 426 pp.

[3] A. R. Rzhanitsyn, Some Problems in the Mechanics of Time-Deformable Systems, Gostekhizdat, Moscow, 1949, 248 pp.

[4] R. M. Dreizler, C. S. Lüdde, Theoretical Mechanics: Theoretical Physics 1, Graduate Texts in Physics, Springer, Berlin, 2011, 402 pp. | Zbl