Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a23, author = {E. N. Ogorodnikov}, title = {On a class of fractional differential equations for~mathematical models of dynamic system with~memory}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {245--252}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a23/} }
TY - JOUR AU - E. N. Ogorodnikov TI - On a class of fractional differential equations for~mathematical models of dynamic system with~memory JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 245 EP - 252 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a23/ LA - ru ID - VSGTU_2013_1_a23 ER -
%0 Journal Article %A E. N. Ogorodnikov %T On a class of fractional differential equations for~mathematical models of dynamic system with~memory %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 245-252 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a23/ %G ru %F VSGTU_2013_1_a23
E. N. Ogorodnikov. On a class of fractional differential equations for~mathematical models of dynamic system with~memory. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 245-252. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a23/
[1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integrals and derivatives of fractional order and some of their applications, Nauka i Tekhnika, Minsk, 1987, 688 pp. | MR | Zbl
[2] A. M. Nakhushev, Fractional calculus and its applications, Fizmatlit, Moscow, 2003, 271 pp. | Zbl
[3] E. N. Ogorodnikov, “Mathematical models of the fractional oscillator, setting and structure of the Cauchy problem”, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 1, Matem. Mod. Kraev. Zadachi, SamGTU, Samara, 2009, 177–181
[4] F. Mainardi, “Fractional relaxation-oscillation and fractional diffusion-wave phenomena”, Chaos, Solitons and Fractals, 7:9 (1996), 1461–1477 | DOI | MR | Zbl
[5] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl
[6] E. N. Ogorodnikov, N. S. Yashagin, “Some special functions in the solution to Cauchy problem for a fractional oscillating equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2009, no. 1(18), 276–279 | DOI
[7] E. N. Ogorodnikov, N. S. Yashagin, “Setting and solving of the Cauchy type problems for the second order differential equations with Riemann–Liouville fractional derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 24–36 | DOI
[8] E. N. Ogorodnikov, N. S. Yashagin, V. P. Radchenko, “Rheological model of viscoelastic body with memory and differential equations of fractional oscillator”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 1(22), 255–268 | DOI
[9] M. Caputo, F. Mainardi, “A new dissipation model based on memory mechanism”, Pure Appl. Geophys., 91:1 (1971), 134–147 | DOI
[10] R. L. Bagley, P. J. Torvik, “On the Fractional Calculus Model of Viscoelastic Behavior”, J. Rheol., 30:1 (1986), 133–155 | DOI | Zbl
[11] Yu. N. Rabotnov, Elements of continuum mechanics of materials with memory, Nauka, Moscow, 1977, 383 pp. | MR
[12] I. H. Barrett, “Differential equations of non-integer orde”, Canad. J. Math., 6:4 (1954), 529–541 | DOI | MR | Zbl
[13] E. N. Ogorodnikov, “Some aspects of initial value problems theory for differential equations with Riemann–Liouville derivatives”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 5(21), 10–23 | DOI