Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a21, author = {A. I. Mikhailov}, title = {Infinite motion in the classical functional mechanics}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {222--232}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a21/} }
TY - JOUR AU - A. I. Mikhailov TI - Infinite motion in the classical functional mechanics JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 222 EP - 232 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a21/ LA - ru ID - VSGTU_2013_1_a21 ER -
A. I. Mikhailov. Infinite motion in the classical functional mechanics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 222-232. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a21/
[1] I. V. Volovich, “Time Irreversibility Problem and Functional Formulation of Classical Mechanics”, Vestnik SamGU. Estestvennonauchn. Ser., 2008, no. 8/1(67), 35–55
[2] I. V. Volovich, “Bogoliubov equations and functional mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1128–1135 | DOI | DOI | Zbl
[3] N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics, Gostekhizdat, Moscow, Leningrad, 1946, 119 pp. | MR
[4] A. S. Trushechkin, “Irreversibility and the role of an instrument in the functional formulation of classical mechanics”, Theoret. and Math. Phys., 164:3 (2010), 1198–1201 | DOI | DOI | Zbl
[5] I. V. Volovich, A. S. Trushechkin, “Functional Classical Mechanics and Rational Numbers”, p-Adic Numb. Ultr. Anal. Appl, 1:4 (2009), 361–367, arXiv: [math-ph] 0910.1502 | DOI | MR | Zbl
[6] E. V. Piscovskiy, I. V. Volovich,, “On the Correspondence Between Newtonian and Functional Mechanics”, Quantum Bio-Informatic IV, Quantum Probability and White Noise Analisis, 28, eds. L. Accardy, W. Freudenberg, M. Ohya, World Sci, Singapure, 2011, 363–372 | DOI | MR
[7] A. I. Mikhaylov, “Functional mechanics: Evolution of the moments of distribution function and the Poincaré recurrence theorem”, p-Adic Numb. Ultr. Anal. Appl, 3:3 (2011), 205–211 | DOI | DOI | MR | Zbl
[8] O. V. Groshev, “Liouville operator and functional mechanics”, The Third International Conference “Mathematical Physics and Its Applications”, Book of Abstracts (August 27 – September 01, 2012 Samara, Russia), eds. I. V. Volovich, V. P. Radchenko, Samara State Technical Univ., Samara, 2012, 105
[9] I. V. Volovich, “Functional mechanics and black holes”, The Third International Conference “Mathematical Physics and Its Applications”, Book of Abstracts (August 27 – September 01, 2012 Samara, Russia), eds. I. V. Volovich, V. P. Radchenko, Samara State Technical Univ., Samara, 2012, 92
[10] C. W. Misner, K. S. Thorne, J. A. Wheeler, Gravitation, W. H. Freeman, San Francisco, 1973, 1215 pp. ; Ch. Mizner, K. Torn, Dzh. Uiler, Gravitatsiya, v 3-kh t, Mir, M., 1977 (T. 1, 480 c.; T. 2, 527 c.; T. 3, 512 c.) | MR
[11] V. V. Kozlov, Thermal equilibrium in the sense of Gibbs and Poincaré, Institut Komp'yuternykh Issledovanij, Moscow, Izhevsk, 2002, 320 pp. | MR | Zbl