Analytical solutions of problems of thermoelasticity for multilayered bodies with variable properties
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 215-221.

Voir la notice de l'article provenant de la source Math-Net.Ru

The technics for the construction of approximate analytical solutions for the quasistatic problems of thermoelasticity (plane-stressed state, plane deformation) for the multilayered bodies with variable within limits of each layer physical properties of medium. The recursive method is used for the construction of systems of coordinate functions, satisfying the boundary matching conditions, given as the equality of radial (normal) stresses and displacements in the layer-contact points.
Keywords: multilayer constructions, analytical solution, thermoelasticity problem, environmental variable physical properties, system of coordinate functions, Bubnov–Galyorkin orthogonal method.
@article{VSGTU_2013_1_a20,
     author = {V. A. Kudinov and A. E. Kuzneysova and A. V. Eremin and E. V. Kotova},
     title = {Analytical solutions of problems of thermoelasticity for multilayered bodies with variable properties},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {215--221},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a20/}
}
TY  - JOUR
AU  - V. A. Kudinov
AU  - A. E. Kuzneysova
AU  - A. V. Eremin
AU  - E. V. Kotova
TI  - Analytical solutions of problems of thermoelasticity for multilayered bodies with variable properties
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 215
EP  - 221
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a20/
LA  - ru
ID  - VSGTU_2013_1_a20
ER  - 
%0 Journal Article
%A V. A. Kudinov
%A A. E. Kuzneysova
%A A. V. Eremin
%A E. V. Kotova
%T Analytical solutions of problems of thermoelasticity for multilayered bodies with variable properties
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 215-221
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a20/
%G ru
%F VSGTU_2013_1_a20
V. A. Kudinov; A. E. Kuzneysova; A. V. Eremin; E. V. Kotova. Analytical solutions of problems of thermoelasticity for multilayered bodies with variable properties. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 215-221. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a20/

[1] A. D. Kovalenko, Introduction to Thermoelasticity, Nauk. Dumka, Kiev, 1965, 202 pp.

[2] S. Timoshenko, J. N. Goodier, Theory of Elasticity, McGraw-Hill Book Company, Inc., New York, Toronto, London, 1951, xviii+506 pp. ; S. P. Timoshenko, Dzh. Guder, Teoriya uprugosti, Nauka, M., 1979, 560 pp. | Zbl

[3] V. A. Kudinov, É. M. Kartashov, V. V. Kalashnikov, Analytical solutions of problem of heat and mass transfer and thermoelasticity for multilayered structures, Vyssh. shk., Moscow, 2005, 430 pp.

[4] V. A. Kudinov, A. V. Eremin, E. V. Kotova, “Analytical solutions of problems of thermoelasticity for multilayered bodies with variable properties”, The Third International Conference “Mathematical Physics and Its Applications”, Book of Abstracts (August 27 – September 01, 2012 Samara, Russia), eds. I. V. Volovich, V. P. Radchenko, Samara State Technical Univ., Samara, 2012, 184–185

[5] V. A. Kudinov, A. V. Eremin, E. V. Kotova, “Obtaining exact analytical solutions of the thermoelasticity problem for multilayer cylindrical structures”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 2(27), 188–191 | DOI | Zbl