Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a2, author = {A. A. Andreev and E. A. Kozlova and S. V. Leksina}, title = {Boundary control for the processes, described by hyperbolic systems}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {24--30}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a2/} }
TY - JOUR AU - A. A. Andreev AU - E. A. Kozlova AU - S. V. Leksina TI - Boundary control for the processes, described by hyperbolic systems JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 24 EP - 30 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a2/ LA - ru ID - VSGTU_2013_1_a2 ER -
%0 Journal Article %A A. A. Andreev %A E. A. Kozlova %A S. V. Leksina %T Boundary control for the processes, described by hyperbolic systems %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 24-30 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a2/ %G ru %F VSGTU_2013_1_a2
A. A. Andreev; E. A. Kozlova; S. V. Leksina. Boundary control for the processes, described by hyperbolic systems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 24-30. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a2/
[1] B. I. Ptashnik, Ill-posed boundary value problems for partial differential equations, Naukova Dumka, Kiev, 1984, 264 pp. | MR
[2] A. G. Butkovskiy, Theory of optimal control of systems with distributed parameters, Nauka, Moscow, 1965, 474 pp. | MR
[3] V. A. Svetlitskiy, The mechanics of flexible rods and threads, Mashinostroenie, Moscow, 1978, 224 pp.
[4] V. Ja. Skorobogat'ko, Investigation in the qualitative theory of partial differential equations, Naukova Dumka, Kiev, 1980, 244 pp. | MR | Zbl
[5] A. A. Andreev, S. V. Leksina, “Boundary control problem for the first boundary value problem for a second-order system of hyperbolic type”, Differ. Equ., 47:6 (2011), 848–854 | DOI | MR | Zbl
[6] S. A. Avdonin, M. I. Belishev, S. A. Ivanov, “Boundary control and a matrix inverse problem for the equation $u_{tt}-u_{xx}+V(x)u=0$”, Math. USSR-Sb., 72:2 (1992), 287–310 | DOI | MR | Zbl | Zbl
[7] F. R. Gantmakher, Theory of matrices, Nauka, Moscow, 1988, 549 pp. | MR | Zbl
[8] P. Lankaster, Theory of matrices, Nauka, Moscow, 1978, 280 pp. | MR
[9] A. V. Bitsadze, Some Classes of Partial Differential Equations, Advanced Studies in Contemporary Mathematics, 4, Gordon and Breach, New York, 1988, 520 pp. | MR | MR | Zbl
[10] E. A. Kozlova, “Damping problem for the hyperbolic equation with mixed derivative”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 4(25), 37–42 | DOI
[11] E. A. Kozlova, “Control problem for the hyperbolic equation with the characteristics having the angular coefficients of the same sign”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 1(26), 243–247 | DOI
[12] A. A. Andreev, S. V. Leksina, “The boundary control problem for the system of wave equations”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2008, no. 1(16), 5–10 | DOI | MR
[13] M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Nauka, Moscow, 1972, 232 pp. | MR
[14] V. A. Il'in, “Boundary control of oscillations on two ends in terms of the generalized solution of the wave equation with finite energy”, Differ. Equ., 36:11 (2000), 1659–1675 | DOI | MR | Zbl
[15] V. A. Il'in, E. I. Moiseev, “Boundary control at two endpoints of a process described by the telegraph equation”, Dokl. Akad. Nauk, 394:2 (2004), 154–158 | MR | Zbl