Coupled thermodynamic orhogonality in non-linear models of type-III thermoelasticity
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 207-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present study is devoted to a derivation of non-linear constitutive equations for the non-linear Green-Naghdi type-III thermoelastic model on the basis of the principle of thermodynamic (or thermomechanical) orthogonality. The latter was proposed by Ziegler as an extention to the Onsager linear irreversible thermodynamics. It states that the irreversible constituent parts of thermodynamic currents (velocities) are orthogonal to the convex dissipation potential level surface in the space of thermodynamic forces for any process of heat propagation in a solid. Non-linear constitutive laws of the heat propagation complying with the principle of thermomechanical orthogonality are obtained and discussed.
Keywords: thermoelasticity, maximum principle, irreversible process, thermodynamic orthogonality, constitutive law.
Mots-clés : thermodynamic force, thermodynamic flux
@article{VSGTU_2013_1_a19,
     author = {V. A. Kovalev and Yu. N. Radayev},
     title = {Coupled thermodynamic orhogonality in non-linear models of {type-III} thermoelasticity},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {207--214},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a19/}
}
TY  - JOUR
AU  - V. A. Kovalev
AU  - Yu. N. Radayev
TI  - Coupled thermodynamic orhogonality in non-linear models of type-III thermoelasticity
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 207
EP  - 214
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a19/
LA  - ru
ID  - VSGTU_2013_1_a19
ER  - 
%0 Journal Article
%A V. A. Kovalev
%A Yu. N. Radayev
%T Coupled thermodynamic orhogonality in non-linear models of type-III thermoelasticity
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 207-214
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a19/
%G ru
%F VSGTU_2013_1_a19
V. A. Kovalev; Yu. N. Radayev. Coupled thermodynamic orhogonality in non-linear models of type-III thermoelasticity. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 207-214. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a19/

[1] S. R. de Groot, Thermodynamics of Irreversible Processes, North-Holland Publishing Co., Amsterdam, 1951, xvi+242 pp. ; S. R. de Groot, Termodinamika neobratimykh protsessov, Gostekhteoretizdat, M., 1956, 280 pp. | MR | Zbl

[2] S. R. de Groot, P. Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam, 1962, x+510 pp. ; S. R. de Groot, P. Mazur, Neravnovesnaya termodinamika, Mir, M., 1964, 456 pp. | MR | Zbl

[3] A. E. Green, P. M. Naghdi, “On undamped heat waves in an elastic solid”, J. Thermal Stresses, 15:2 (1992), 253–264 | DOI | MR

[4] A. E. Green, P. M. Naghdi, “Thermoelasticity without energy dissipation”, J. Elasticity, 31:3 (1993), 189–208 | DOI | MR | Zbl

[5] H. Ziegler, “Some extreme principles in irreversible thermodynamics with application to continuum mechanics”, Progress in Solid Mechanics IV, eds. I. N. Sneddon, R. Hill, North-Holland, Amsterdam, 1963, 93–193 ; G. Tsigler, Ekstremalnye printsipy termodinamiki neobratimykh protsessov i mekhanika sploshnoi sredy, Mir, M., 1966, 134 pp. | MR | MR

[6] H. Ziegler, “Proof of an orthogonality principle in irreversible thermodynamics”, Z. Angew. Math. Phys., 21:6 (1970), 853–863 | DOI | Zbl

[7] H. Ziegler, “Discussion of some objections to thermomechanical orthogonality”, Ingenieur-Archiv, 50:3 (1981), 149–164 | DOI | Zbl

[8] V. A. Kovalev, YU. N. Radayev, Elements of the classical field theory: variational symmetries and geometric invariants, Fizmatlit, Moscow, 2009, 156 pp.

[9] V. A. Kovalev, Yu. N. Radayev, “Wave problems of field theory and thermomechanics”, The 2nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich and Yu. N. Radayev, Kniga, Samara, 2010

[10] V. A. Kovalev, Yu. N. Radayev, Wave problems of field theory and thermomechanics, Saratov Univ., Saratov, 2010, 328 pp.

[11] R. Hill, The mathematical theory of plasticity, Clarendon Press, Oxford, 1950, x+356 pp. ; R. Khill, Matematicheskaya teoriya plastichnosti, Gostekhteoretizdat, M., 1956, 408 pp. | MR | Zbl

[12] D. D. Ivlev, Theory of ideal plasticity, Nauka, Moscow, 1966, 232 pp. | MR | Zbl

[13] Yu. N. Radayev, A Three-Dimensional Problem of the Mathematical Theory of Plasticity, Samar. Gos. Univ., Samara, 2006, 340 pp.