Thermodynamics of the viscous fluid from an observer's viewpoint
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 189-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

The development of the non-equilibrium thermodynamics of the viscous fluid not using the local thermodynamic equilibrium hypothesis is considered. The theory is based on the causal mechanics of the heat conducting continuum, which includes the 1st law of thermodynamics as a theorem. The conditions of applicability of the 2nd law of thermodynamics and the dissipation of the kinetic energy problem are discussed. Main conclusions are illustrated using the example from the numerical analysis.
Keywords: non-equilibrium thermodynamics, fluid mechanics, conservation laws, causality.
@article{VSGTU_2013_1_a17,
     author = {M. Yu. Belevich},
     title = {Thermodynamics of the viscous fluid from an observer's viewpoint},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {189--198},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a17/}
}
TY  - JOUR
AU  - M. Yu. Belevich
TI  - Thermodynamics of the viscous fluid from an observer's viewpoint
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 189
EP  - 198
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a17/
LA  - ru
ID  - VSGTU_2013_1_a17
ER  - 
%0 Journal Article
%A M. Yu. Belevich
%T Thermodynamics of the viscous fluid from an observer's viewpoint
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 189-198
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a17/
%G ru
%F VSGTU_2013_1_a17
M. Yu. Belevich. Thermodynamics of the viscous fluid from an observer's viewpoint. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 189-198. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a17/

[1] I. Müller, T. Ruggeri, Extended thermodynamics, Springer Tracts in Natural Philosophy, 37, Springer-Verlag, New York, 1993, xii+230 pp. | DOI | MR | Zbl

[2] D. Jou, J. Casas-Vázquez, G. Lebon, “Extended irreversible thermodynamics”, Rep. Prog. Phys., 51:8 (1988), 1105–1179 | DOI | MR

[3] D. Jou, J. Casas-Vázquez, G. Lebon, “Extended irreversible thermodynamics revisited (1988–98)”, Rep. Prog. Phys., 62:7 (1999), 1035–1142 | DOI | MR

[4] M. Belevich, “Causal description of non-relativistic dissipative fluid motion”, Acta Mech., 161:1–2 (2003), 65–80 | DOI | Zbl

[5] M. Belevich., “Relationship between standard and causal fluid models”, Acta Mech., 180:1–4 (2005), 83–106 | DOI | Zbl

[6] M. Belevich, “Non-relativistic abstract continuum mechanics and its possible physical interpretations”, J. Phys. A, Math. Theor., 41:4 (2008), 045401, 19 pp. | DOI | MR | Zbl

[7] M. Belevich, “Causal description of heat and mass transfer”, J. Phys. A, Math. Gen., 37:8 (2004), 3053–3069 | DOI | MR | Zbl

[8] M. Belevich, “On the continuity equation”, J. Phys. A, Math. Theor., 42:37 (2009), 375502, 13 pp. | DOI | MR | Zbl

[9] I. Gyarmati, Non-equilibrium Thermodynamics. Field Theory and Variational Principles, Springer, New York, 1970

[10] P. J. Roach, Computational Fluid Dynamics, Hermosa Publishers, Albuquerque, N.M., 1976, vii+446 pp. | MR