Modified boundary element method for the solution of connected problems of mathematical physics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 172-180.

Voir la notice de l'article provenant de la source Math-Net.Ru

The modified boundary element method for physico-mathematical modeling of the multifactorial processes is offered for discussion. Physical modeling based on the Onsager's theorem about the relationship between generalized forces and fluxes where we assume the coefficients of reciprocity are nonlinear. The approach is illustrated by the example of the strain diagram. Mathematical modeling is based on a modification of the BEM where all incorrect procedures of the numerical differentiation and integration were replaced by preliminary analytical calculations.
Mots-clés : phase transition
Keywords: open systems, stresses, strains, deformation resource, integral equation, influence function, elliptic and hyperbolic problems.
@article{VSGTU_2013_1_a15,
     author = {V. P. Fedotov},
     title = {Modified boundary element method for the solution of connected problems of mathematical physics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {172--180},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a15/}
}
TY  - JOUR
AU  - V. P. Fedotov
TI  - Modified boundary element method for the solution of connected problems of mathematical physics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 172
EP  - 180
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a15/
LA  - ru
ID  - VSGTU_2013_1_a15
ER  - 
%0 Journal Article
%A V. P. Fedotov
%T Modified boundary element method for the solution of connected problems of mathematical physics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 172-180
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a15/
%G ru
%F VSGTU_2013_1_a15
V. P. Fedotov. Modified boundary element method for the solution of connected problems of mathematical physics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 172-180. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a15/

[1] I. Gyarmati, Non-equilibrium Thermodynamics. Field Theory and Variational Principles, Springer, Berlin, 1970, xi+184 pp.; I. Dyarmati, Neravnovesnaya termodinamika. Teoriya polya i variatsionnye printsipy, Mir, M., 1974, 301 pp.

[2] J. M. T. Tompson, Instabilities and catastrophes in science and engineering, Wiley, Chichester, 1981, xvi+242 pp.; Dzh. M. Tompson, Neustoichivosti i katastrofy v nauke i tekhnike, Mir, M., 1985, 256 pp. | MR | Zbl

[3] I. Prigogine, Introduction to thermodynamics of irreversible processes, 3d ed, Interscience Publishers, New York, 1967, xv+147 pp.; I. Prigozhin, Vvedenie v termodinamiku neobratimykh protsessov, Inostr. lit., M., 1960, 127 pp. | MR

[4] V. P. Fedotov, A. A. Konteev, “Modified boundary element method for problems on oscillations of flat membranes”, Proc. Inst. Math. Mech., 267:1 (2009), S78–S89 | DOI | MR | MR | Zbl

[5] V. P. Fedotov, L. F. Spevak, Solution of Coupled Diffusive-Deformation Problems on the Basis of Parallel Algorithms, UrO RAN, Ekaterinburg, 2007, 172 pp.