On the existence of boundary values of solutions of elliptic equations
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 97-105.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we show a survey of results related to the existence of boundary values of solutions of elliptic equations.
Mots-clés : elliptic equations
Keywords: classical and generalized solutions, limits of boundary values, existence theorems.
@article{VSGTU_2013_1_a10,
     author = {V. P. Mikhailov},
     title = {On the existence of boundary values of solutions of elliptic equations},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {97--105},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a10/}
}
TY  - JOUR
AU  - V. P. Mikhailov
TI  - On the existence of boundary values of solutions of elliptic equations
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 97
EP  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a10/
LA  - ru
ID  - VSGTU_2013_1_a10
ER  - 
%0 Journal Article
%A V. P. Mikhailov
%T On the existence of boundary values of solutions of elliptic equations
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 97-105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a10/
%G ru
%F VSGTU_2013_1_a10
V. P. Mikhailov. On the existence of boundary values of solutions of elliptic equations. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 97-105. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a10/

[1] V. P. Mikhailov, “The Dirichlet problem for a second order elliptic equation”, Differ. Uravn., 12:10 (1976), 1877–1891

[2] V. P. Mikhailov, “On the boundary values of solutions of second-order elliptic equations”, Math. USSR-Sb., 29:1 (1976), 3–11 | DOI | MR | Zbl

[3] A. K. Gushchin, “On the Dirichlet problem for a second-order elliptic equation”, Math. USSR-Sb., 65:1 (1990), 19–66 | DOI | MR | Zbl

[4] A. K. Gushchin, V. P. Mikhailov, “On the continuity of the solutions of a class of non-local problems for an elliptic equation”, Sb. Math., 186:2 (1995), 197–219 | DOI | MR | Zbl

[5] A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of elliptic equations”, Vestn. SamGU. Yestestvennonauchnaya seriya, 2008, no. 8/1(67), 61–75

[6] A. K. Gushchin, V. P. Mikhailov, “Internal estimates of general solutions of second order elliptic equation”, Vestn. SamGU. Yestestvennonauchnaya seriya, 2008, no. 8/1(67), 76–94

[7] A. K. Gushchin, V. P. Mikhailov, “On the existence of boundary values of solutions of an elliptic equation”, Math. USSR-Sb., 73:1 (1992), 171–194 | DOI | MR | Zbl

[8] A. K. Gushchin, V. P. Mikhailov, “On boundary values in $L_p$, $p>1$, of solutions of elliptic equations”, Math. USSR-Sb., 36:1 (1980), 1–19 | DOI | MR | Zbl | Zbl

[9] V. P. Mikhailov, “On one sufficient condition of the existence of limit values of polyharmonics functions on the boundary”, Differential equations and their applications, Proceedings of the Second International Seminar, Samara, 1998, 115–121

[10] V. P. Mikhailov, “Existence of boundary values for metaharmonic functions”, Sb. Math., 190:10 (1999), 1417–1448 | DOI | DOI | MR | Zbl

[11] A. K. Gushchin, “$L_p$-estimates of the nontangential maximal function for solutions a second-order elliptic equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2013, no. 1(30), 53–69 | DOI

[12] F. Riesz, “Über die Randwerte einer analytischen Funktion”, Math. Z., 18 (1923), 87–95 | DOI | Zbl

[13] J. E. Littlewood, R. E. A. C. Paley, “Theorems on Fourier Series and Power Series”, J. London Math. Soc., 6:3 (1931), 230–233 | DOI

[14] J. E. Littlewood, R. E. A. C. Paley, “Theorems on Fourier Series and Power Series (II)”, Proc. London Math. Soc., 42:1 (1937), 52–89 | DOI

[15] J. E. Littlewood, R. E. A. C. Paley, “Theorems on Fourier Series and Power Series (III)”, Proc. London Math. Soc., 43:2 (1938), 105–126 | DOI

[16] J. Marcinkiewicz, A. Zygmund, “A theorem of Lusin. Part I”, Duke Math. J., 4:3 (1938), 473–485 | DOI