The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 15-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics is studied. A priori estimates for the solutions of the considered problems are obtained by using the method of energy inequalities. Uniqueness and continuous dependence of the solutions on the input data follow from these estimates.
Keywords: nonlocal boundary value problem, equations of mathematical physics, a priori estimates for solutions.
@article{VSGTU_2013_1_a1,
     author = {A. A. Alikhanov},
     title = {The {Steklov} nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {15--23},
     publisher = {mathdoc},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a1/}
}
TY  - JOUR
AU  - A. A. Alikhanov
TI  - The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2013
SP  - 15
EP  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a1/
LA  - ru
ID  - VSGTU_2013_1_a1
ER  - 
%0 Journal Article
%A A. A. Alikhanov
%T The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2013
%P 15-23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a1/
%G ru
%F VSGTU_2013_1_a1
A. A. Alikhanov. The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 15-23. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a1/

[1] V. A. Steklov, Fundamental problems in mathematical physics, ed. V. S. Vladimirov, Nauka, Moscow, 1983, 432 pp. | MR | Zbl

[2] A. V. Bitsadze, A. A. Samarskii, “On some simple generalizations of linear elliptic boundary problems”, Sov. Math., Dokl., 10 (1969), 398–400 | Zbl

[3] V. A. Il'in, E. I. Moiseev, “A nonlocal boundary value problem for the Sturm–Liouville operator in a differential and a difference treatment”, Dokl. Akad. Nauk SSSR, 291:3 (1986), 534–539 | MR

[4] V. A. Il'in, E. I. Moiseev, “A nonlocal boundary value problem of the second kind for the Sturm–Liouville operator”, Differ. Uravn., 23:8 (1987), 1422–1431 | MR | Zbl

[5] M. Kh. Shkhanukov, “On the stability of difference schemes approximating nonlocal problems of Bitsadze–Samarskii”, Dokl. AMAN, 1:1 (1994), 38–42

[6] N. I. Ionkin, “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 | MR | Zbl

[7] A. Gulin, V. Morozova, “Stability of the two-parameter set of nonlocal difference schemes”, Comput. Methods Appl. Math., 9:1 (2009), 79–99 | DOI | MR | Zbl

[8] A. V. Gulin, V. A. Morozova, “On a family of nonlocal difference schemes”, Differ. Equ., 45:7 (2009), 1020–1033 | DOI | MR | Zbl

[9] A. V. Gulin, V. A. Morozova, N. S. Udovichenko, “A criterion for the stability of a family of nonlocal difference schemes”, Differ. Equ., 46:7 (2010), 973–990 | DOI | MR | Zbl

[10] A. A. Alikhanov, “Nonlocal boundary value problems in differential and difference interpretations”, Differ. Equ., 44:7 (2008), 952–959 | DOI | MR | Zbl

[11] A. A. Alikhanov, “On the stability and convergence of nonlocal difference schemes”, Differ. Equ., 46:7 (2010), 949–961 | DOI | MR | Zbl

[12] O. A. Ladyzhenskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Nauka, Moscow, 1967, 736 pp. | MR