Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2013_1_a1, author = {A. A. Alikhanov}, title = {The {Steklov} nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {15--23}, publisher = {mathdoc}, number = {1}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a1/} }
TY - JOUR AU - A. A. Alikhanov TI - The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2013 SP - 15 EP - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a1/ LA - ru ID - VSGTU_2013_1_a1 ER -
%0 Journal Article %A A. A. Alikhanov %T The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2013 %P 15-23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a1/ %G ru %F VSGTU_2013_1_a1
A. A. Alikhanov. The Steklov nonlocal boundary value problem of the second kind for the simplest equations of mathematical physics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 1 (2013), pp. 15-23. http://geodesic.mathdoc.fr/item/VSGTU_2013_1_a1/
[1] V. A. Steklov, Fundamental problems in mathematical physics, ed. V. S. Vladimirov, Nauka, Moscow, 1983, 432 pp. | MR | Zbl
[2] A. V. Bitsadze, A. A. Samarskii, “On some simple generalizations of linear elliptic boundary problems”, Sov. Math., Dokl., 10 (1969), 398–400 | Zbl
[3] V. A. Il'in, E. I. Moiseev, “A nonlocal boundary value problem for the Sturm–Liouville operator in a differential and a difference treatment”, Dokl. Akad. Nauk SSSR, 291:3 (1986), 534–539 | MR
[4] V. A. Il'in, E. I. Moiseev, “A nonlocal boundary value problem of the second kind for the Sturm–Liouville operator”, Differ. Uravn., 23:8 (1987), 1422–1431 | MR | Zbl
[5] M. Kh. Shkhanukov, “On the stability of difference schemes approximating nonlocal problems of Bitsadze–Samarskii”, Dokl. AMAN, 1:1 (1994), 38–42
[6] N. I. Ionkin, “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 | MR | Zbl
[7] A. Gulin, V. Morozova, “Stability of the two-parameter set of nonlocal difference schemes”, Comput. Methods Appl. Math., 9:1 (2009), 79–99 | DOI | MR | Zbl
[8] A. V. Gulin, V. A. Morozova, “On a family of nonlocal difference schemes”, Differ. Equ., 45:7 (2009), 1020–1033 | DOI | MR | Zbl
[9] A. V. Gulin, V. A. Morozova, N. S. Udovichenko, “A criterion for the stability of a family of nonlocal difference schemes”, Differ. Equ., 46:7 (2010), 973–990 | DOI | MR | Zbl
[10] A. A. Alikhanov, “Nonlocal boundary value problems in differential and difference interpretations”, Differ. Equ., 44:7 (2008), 952–959 | DOI | MR | Zbl
[11] A. A. Alikhanov, “On the stability and convergence of nonlocal difference schemes”, Differ. Equ., 46:7 (2010), 949–961 | DOI | MR | Zbl
[12] O. A. Ladyzhenskaja, V. A. Solonnikov, N. N. Ural'ceva, Linear and quasi-linear equations of parabolic type, Nauka, Moscow, 1967, 736 pp. | MR