Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_4_a7, author = {E. V. Nebogina}, title = {The method for solving the boundary value problem of the beam's creep and creep rupture strength condition of the pure bending based on the rod type structural model}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {87--96}, publisher = {mathdoc}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a7/} }
TY - JOUR AU - E. V. Nebogina TI - The method for solving the boundary value problem of the beam's creep and creep rupture strength condition of the pure bending based on the rod type structural model JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 87 EP - 96 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a7/ LA - ru ID - VSGTU_2012_4_a7 ER -
%0 Journal Article %A E. V. Nebogina %T The method for solving the boundary value problem of the beam's creep and creep rupture strength condition of the pure bending based on the rod type structural model %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 87-96 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a7/ %G ru %F VSGTU_2012_4_a7
E. V. Nebogina. The method for solving the boundary value problem of the beam's creep and creep rupture strength condition of the pure bending based on the rod type structural model. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 87-96. http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a7/
[1] Kadashevich Yu. I., Novozhilov V. V., “The theory of plasticity and creep of metals taking microstresses into account”, Izv. Akad. Nauk SSSR, Ser. Mekh. Tverd. Tela, 1981, no. 5, 99–110
[2] Kadashevich Yu. I., Novozhilov V. V., Microstresses in Structural Materials, Mashinostroenie, Leningrad, 1990, 223 pp.
[3] Zarubin V. S., Applied Problems in Thermal Strength of Structural Elements, Mashinostroenie, Moscow, 1985, 294 pp.
[4] Zarubin V. S., Kadashevich Yu. I., Kuz'min M. A., “Describing the creep of metals with a structural model”, Sov. Appl. Mech., 13:9 (1977), 858–861 | DOI
[5] Radchenko V. P., Eremin Yu. A., Rheological deformation and fracture of materials and structural elements, Mashinostroenie-1, Moscow, 2004, 265 pp.
[6] “Structural rheological model of a nonlinearly elastic material”, Sov. Appl. Mech., 26:6 (1990), 577–582 | DOI | Zbl
[7] Radchenko V. P., Kuz'min S. V., “A structural model of damage accumulation and failure of metals during creep”, Strength of Materials, 21:10 (1989), 1300–1306 | DOI
[8] Radchenko V. P., Nebogina E. V., Basov M. V., “Structural model of supercritical elasto-plastic deformation of materials under uniaxial tension”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2000, no. 9, 55–65 | DOI
[9] Radchenko V. P., Shapievskii D. V., “Mathematical model of creep for a microinhomogeneous nonlinearly elastic material”, J. Appl. Mech. Tech. Phys., 49:3 (2008), 478–483 | DOI | Zbl
[10] Radchenko V. P., Andreeva E. A., Nikishaev A. V., “Creep Structural Model of Nonlinearly Elastic Microheterogeneous Material in Complex Stress State”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 60–70 | DOI
[11] Gokhfel'd D. A., Sadakov O. S., Plasticity and Creep of Structural Elements Under Repeated Loading, Mashinostroenie, Moscow, 1984, 256 pp.
[12] Sosnin O. V., Gorev B. V., Nikitenko A. F., Energy Variant of Creep Theory, Inst. of Hydrodynamics, USSR Acad. of Sci., Novosibirsk, 1986, 96 pp.