Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_4_a5, author = {V. A. Barvinok and V. I. Bogdanovich and A. N. Plotnikov}, title = {On a question of limiting distribution of series in~random binary sequence}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {56--71}, publisher = {mathdoc}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a5/} }
TY - JOUR AU - V. A. Barvinok AU - V. I. Bogdanovich AU - A. N. Plotnikov TI - On a question of limiting distribution of series in~random binary sequence JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 56 EP - 71 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a5/ LA - ru ID - VSGTU_2012_4_a5 ER -
%0 Journal Article %A V. A. Barvinok %A V. I. Bogdanovich %A A. N. Plotnikov %T On a question of limiting distribution of series in~random binary sequence %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 56-71 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a5/ %G ru %F VSGTU_2012_4_a5
V. A. Barvinok; V. I. Bogdanovich; A. N. Plotnikov. On a question of limiting distribution of series in~random binary sequence. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 56-71. http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a5/
[1] Samarova S. S., “On the length of the longest head-run for a Markov chain with two states”, Theory Probab. Appl., 26:3 (1982), 498–509 | DOI | MR | Zbl
[2] Uspenskiy V. A., Semenov A. L., Shen' A. Kh., “Can an individual sequence of zeros and ones be random?”, Russian Math. Surveys, 45:1 (1990), 121–189 | DOI | MR | Zbl
[3] V'yugin V. V., “On the longest head-run in an individual random sequence”, Theory Probab. Appl., 42:3 (1998), 541–546 | DOI | DOI | MR | Zbl
[4] Savelyev L. Ya., Balakin S. V., “The joint distribution of the number of ones and the number of 1-runs in binary Markov sequences”, Discrete Math. Appl., 14:4 (2004), 353–372 | DOI | DOI | MR | Zbl
[5] An introduction to probability theory and its applications, v. 1, Wiley Sons, New York, 1968, 509 pp.; Feller V., Vvedenie v teoriyu veroyatnostei i eë prilozheniya, v. 1, Mir, M., 1984, 499 pp.
[6] Knuth D., The Art of Computer Programming, v. 2, Seminumerical Algorithms, Addison-Wesley, Reading, Massachusetts, 1997, xiv+762 pp. ; Knut D., Iskusstvo programmirovaniya, v. 2, Poluchislennye metody, Vilyams, M., 2007, 832 pp. | MR
[7] Plotnikov A. N., “On the paradox of the law of large numbers for the maximum series in sequential sampling”, Izvestiya Samarskogo nauchnogo tsentra RAN, 11:5 (2009), 122–126
[8] Plotnikov A. N., “Law distribution of length for maximal series and its statistical applications”, Izvestiya Samarskogo nauchnogo tsentra RAN, 8:4 (2006), 1047–1056 | MR
[9] Barvinok V. A., Bogdanovich V. I., Plotnikov A. N., “On the spectral structure of the series in sequential sampling for stationary process”, Obozr. Prikl. Promyshl. Matem., 17:3 (2010), 382–384