The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 48-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proves the unique solvability of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation, which is the generalization of the Dirichlet and Poincare problems. We also obtain the criterion for the uniqueness of the regular solution.
Keywords: multi-dimensional wave equation, cylindrical domain, local boundary value problem, solvability, uniqueness of solutions.
@article{VSGTU_2012_4_a4,
     author = {S. A. Aldashev},
     title = {The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {48--55},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a4/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 48
EP  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a4/
LA  - ru
ID  - VSGTU_2012_4_a4
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 48-55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a4/
%G ru
%F VSGTU_2012_4_a4
S. A. Aldashev. The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 48-55. http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a4/

[1] Hadamard J., “Sur les problèmes aux dérivés partielles et leur signification physique”, Princeton University Bulletin, 13 (1902), 49–52

[2] Bitsadze A. V., Mixed-Type Equations, Akad. Nauk USSR, Moscow, 1959, 164 pp.

[3] Nakhushev A. M., Problems with Displacement for a Partial Differential Equation, Nauka, Moscow, 2006, 287 pp. | Zbl

[4] Bourgin D. G., Duffin R., “The Dirichlet problem for the virbrating string equation”, Bull. Amer. Math. Soc., 45 (1939), 851–858 | DOI | MR | Zbl

[5] Fox D. W., Pucci C., “The Dirichlet problem for the wave equation”, Ann. Mat. Pura Appl. (4), 46 (1958), 155–182 | DOI | MR | Zbl

[6] Nakhushev A. M., “Uniqueness Criterion for the Dirichlet Problem for an Equation of Mixed Type in a Cylindrical Domain”, Differ. Uravn., 6:1 (1970), 190–191 | Zbl

[7] Dunninger D. R.; Zachmanoglou E. C., “The condition for uniqueness of the Dirichlet problem for hyperbolic equations in cylindrical domains”, J. Math. Mech., 18 (1969), 763–766 | MR | Zbl

[8] Aldashev S. A., “The well-posedness of the Dirichlet problem in the cylindric domain for the multidimensional wave equation”, Math. Probl. Eng, 2010 (2010), 653215, 7 pp. | DOI | MR | Zbl

[9] Aldashev S. A., “The well-posedness of the Poincaré problem in the cylindric domain for the higher-dimensional wave equation”, J. Math. Sci. (N. Y.), 173:2 (2011), 150–154 | DOI | MR | Zbl

[10] Mihlin S. G., Higher-dimensional singular integrals and integral equations, Fizmatlit, Moscow, 1962, 254 pp. | MR | Zbl

[11] Kamke É., Manual of ordinary differential equations, Nauka, Moscow, 1965, 703 pp. | MR

[12] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, ed. H. Bateman, McGraw-Hill Book Co, Inc., New York – Toronto – London, 1953, 396 pp. ; Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii. V 3-kh t, v. 2, Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Nauka, M., 1974, 295 pp. | Zbl | MR

[13] Tihonov A. N., Samarskiy A. A., Equations of mathematical physics, Nauka, Moscow, 1966, 724 pp. | MR | Zbl

[14] Aldashev S. A., “Dirichlet and Poincaré problems for higher-dimensional wave equation”, Izv. NAN RK, Ser. Fiz.-Mat., 2010, no. 1, 3–6