The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 48-55

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proves the unique solvability of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation, which is the generalization of the Dirichlet and Poincare problems. We also obtain the criterion for the uniqueness of the regular solution.
Keywords: multi-dimensional wave equation, cylindrical domain, local boundary value problem, solvability, uniqueness of solutions.
@article{VSGTU_2012_4_a4,
     author = {S. A. Aldashev},
     title = {The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {48--55},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a4/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 48
EP  - 55
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a4/
LA  - ru
ID  - VSGTU_2012_4_a4
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 48-55
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a4/
%G ru
%F VSGTU_2012_4_a4
S. A. Aldashev. The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 48-55. http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a4/