Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2012_4_a3, author = {D. K. Durdiev and Zh. Sh. Safarov}, title = {The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {37--47}, publisher = {mathdoc}, number = {4}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a3/} }
TY - JOUR AU - D. K. Durdiev AU - Zh. Sh. Safarov TI - The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2012 SP - 37 EP - 47 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a3/ LA - ru ID - VSGTU_2012_4_a3 ER -
%0 Journal Article %A D. K. Durdiev %A Zh. Sh. Safarov %T The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2012 %P 37-47 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a3/ %G ru %F VSGTU_2012_4_a3
D. K. Durdiev; Zh. Sh. Safarov. The local solvability of a problem of determining the spatial part of a multidimensional kernel in the integro-differential equation of hyperbolic type. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 37-47. http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a3/
[1] Ovsyannikov L. V., “A nonlinear Cauchy problem in a scale of Banach spaces”, Sov. Math., Dokl., 12 (1971), 1497–1502 | Zbl
[2] Nirenberg L., Topics in nonlinear functional analysis, Courant Institute Math. Sci., New York University, New York, 1974, viii+259 pp. | MR | Zbl
[3] Romanov V. G., “Local solvability of some multidimensional inverse problems for equations of hyperbolic type”, Differ. Equ., 25:2 (1989), 203–209 | MR | Zbl
[4] Romanov V. G., “Questions of the well-posedness of a problem of determining the speed of sound”, Siberian Math. J., 30:4 (1989), 598–605 | DOI | MR | Zbl
[5] Romanov V. G., “On the solvability of inverse problems for hyperbolic equations in a class of functions analytic in some of the variables”, Sov. Math., Dokl., 39:1 (1989), 160–164 | MR | Zbl
[6] Durdiev D. K., “A multidimensional inverse problem for an equation with memory”, Siberian Math. J., 35:3 (1994), 514–521 | DOI | MR | Zbl
[7] Romanov V. G., Stability in inverse problems, Nauchniy Mir, Moscow, 2005, 296 pp. | MR