On the nilpotent Leibniz--Poisson algebras
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 207-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article Leibniz and Leibniz–Poisson algebras in terms of correctness of different identities are investigated. We also examine varieties of these algebras. Let $K$ be a base field of characteristics zero. It is well known that in this case all information about varieties of linear algebras $V$ contains in its polylinear components $P_n(V)$, $n \in \mathbb{N}$, where $P_n(V)$ is a linear span of polylinear words of $n$ different letters in a free algebra $K(X,V)$. In this article we give algebra constructions that generate class of nilpotent varieties of Leibniz algebras and also algebra constructions that generate class of nilpotent by Leibniz varieties of Leibniz–Poisson algebras with the identity $\{ x_1, x_2 \} \cdot \{x_3, x_4 \} = 0$.
Keywords: Leibniz algebra, variety of algebras.
Mots-clés : Leibniz–Poisson algebra
@article{VSGTU_2012_4_a20,
     author = {S. M. Ratseev and O. I. Cherevatenko},
     title = {On the nilpotent {Leibniz--Poisson} algebras},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {207--211},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a20/}
}
TY  - JOUR
AU  - S. M. Ratseev
AU  - O. I. Cherevatenko
TI  - On the nilpotent Leibniz--Poisson algebras
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 207
EP  - 211
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a20/
LA  - ru
ID  - VSGTU_2012_4_a20
ER  - 
%0 Journal Article
%A S. M. Ratseev
%A O. I. Cherevatenko
%T On the nilpotent Leibniz--Poisson algebras
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 207-211
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a20/
%G ru
%F VSGTU_2012_4_a20
S. M. Ratseev; O. I. Cherevatenko. On the nilpotent Leibniz--Poisson algebras. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 207-211. http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a20/

[1] Bakhturin Yu. A., Identities in Lie algebras, Nauka, Moscow, 1985, 448 pp. | MR | Zbl

[2] Mal'tsev Yu. N., “Basis for identities of the algebra of upper triangular matrices”, Algebra and Logic, 10:4 (1971), 242–247 | DOI | MR | Zbl

[3] Ratseev S. M., “Growth in Poisson algebras”, Algebra and Logic, 50:1 (2011), 46–61 | DOI | MR | Zbl

[4] Borisov A. V., Mamaev I. S., Poisson structures and Lie algebras in Hamiltonian mechanics, RKhD, Moscow, Izhevsk, 1999, 464 pp. | MR