Enciphering on the basis of the sums with products of weight and free components as summands
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 199-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the given paper is reviewing of mathematical resources of enciphering of the source text, allowing to ensure the simplicity of appropriate decryption; the source text is a sequence of integer weight coefficients. The composer of the cipher checks how the condition of separability of these coefficients is satisfied. The selection rule provides usage of operations of the lower or upper roundoff. The generated cipher is represented by the values of the finite sums.
Keywords: cipher, finite sums, weight coefficients, separability condition.
Mots-clés : free multipliers
@article{VSGTU_2012_4_a19,
     author = {A. I. Nikonov},
     title = {Enciphering on the basis of the sums with products of weight and free components as summands},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {199--206},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a19/}
}
TY  - JOUR
AU  - A. I. Nikonov
TI  - Enciphering on the basis of the sums with products of weight and free components as summands
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 199
EP  - 206
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a19/
LA  - ru
ID  - VSGTU_2012_4_a19
ER  - 
%0 Journal Article
%A A. I. Nikonov
%T Enciphering on the basis of the sums with products of weight and free components as summands
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 199-206
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a19/
%G ru
%F VSGTU_2012_4_a19
A. I. Nikonov. Enciphering on the basis of the sums with products of weight and free components as summands. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 199-206. http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a19/

[1] Ryabko B. Ya., Fionov A. N., The basis of the modern cryptography for IT practitioners, Nauchniy Mir, Moscow, 2004, 173 pp.

[2] Anderson J. A., Discrete Mathematics with Combinatorics, Prentice Hall, New Jersey, 2000, 799 pp.; Anderson Dzh., Diskretnaya matematika i kombinatorika, Vilyams, M., 2004, 960 pp.

[3] Kostrikin A. I., Introduction to algebra. Foundations of algebra, Nauka, Moscow, 1994, 320 pp. | MR

[4] Nikonov A. I., “Converting the Sum of Weighted Degrees of Natural Numbers with the Same Parameters”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2010, no. 1(20), 258–262 | DOI

[5] Nikonov A. I., “Reduction of the sum of the weight equal powers to explicit combinatorial representation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2012, no. 3(28), 163–169 | DOI