The mechanism of the appearance of stochasticity in~quantum mechanics
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 188-198.

Voir la notice de l'article provenant de la source Math-Net.Ru

The technique for the dynamic description of interaction between the quantum particle and the measuring instrument is offered. This description allows to determine, that the statistic dispersion of measuring instrument characteristics is the cause of the results randomness of the quantum particle space localization.Space-time consideration of the macroscopic meter evolution, initiated by the quantum particle, allows to represent the mechanism of the appearance of probabilistic measure, expressed by the wave function modulus square.
Keywords: wave function collapse, space-time description of the space localization, probabilistic measure appearance.
@article{VSGTU_2012_4_a18,
     author = {A. Yu. Samarin},
     title = {The mechanism of the appearance of stochasticity in~quantum mechanics},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {188--198},
     publisher = {mathdoc},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a18/}
}
TY  - JOUR
AU  - A. Yu. Samarin
TI  - The mechanism of the appearance of stochasticity in~quantum mechanics
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2012
SP  - 188
EP  - 198
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a18/
LA  - ru
ID  - VSGTU_2012_4_a18
ER  - 
%0 Journal Article
%A A. Yu. Samarin
%T The mechanism of the appearance of stochasticity in~quantum mechanics
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2012
%P 188-198
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a18/
%G ru
%F VSGTU_2012_4_a18
A. Yu. Samarin. The mechanism of the appearance of stochasticity in~quantum mechanics. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, no. 4 (2012), pp. 188-198. http://geodesic.mathdoc.fr/item/VSGTU_2012_4_a18/

[1] von Neumann J., Mathematical Foundations of Quantum Mechanics, Investigations in physics, 2, Princeton University Press, Princeton [N.J.], 1955, 445+xii pp. ; Matematicheskie osnovy kvantovoi mekhaniki, Nauka, M., 1964, 368 pp. | MR | Zbl | MR | Zbl

[2] Samarin A. Yu., “Natural space of the micro-object”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki, 2011, no. 3(24), 117–128 | DOI

[3] Feynman R. P., “Space-Time Approach to Non-Relativistic Quantum Mechanics”, Rev. Mod. Phys., 20 (1948), 367–387 | DOI | MR

[4] Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965, 371+xii pp. ; Feinman R., Khibs A., Kvantovaya mekhanika i integraly po traektoriyam, Mir, M., 1968, 382 pp. | MR | Zbl

[5] Zinn Justin J., Path Integrals in Quantum Mechanics, Oxford University Press, Oxford, 2004, 320+xiv pp. ; Zinn-Zhyusten Zh., Kontinualnyi integral v kvantovoi mekhanike, Fizmatlit, M., 2006, 360 pp. | MR

[6] Selected Works of A. N. Kolmogorov, Volume II Probability Theory and Mathematical Statistics, Mathematics and its Applications (Soviet Series), 26, ed. A. N. Shiryayev, Kluwer Academic Publishers Group, Dordrecht, 1992, 597+xvi pp. | MR | MR | Zbl